As well as Ethereum blockchain, Hyperledger Fabric platform (HLF) can be used for token creation, implemented as smart contract (chaincode in HLF terminology), that holds user balances. Unlike Ethereum, HLF chaincodes can't work with user addresses as a holder key, thus we will use combination of Membership Service Provider (MSP) Identifier and user certificate identifier. Below is an simple example of how to create a token as Golang chaincode on the Hyperledger Fabric platform using CCKit chaincode library.
The ERC20 token standard came about as an attempt to standardize token smart contracts in Ethereum, it describes the functions and events that an Ethereum token contract has to implement. Most of the major tokens on the Ethereum blockchain are ERC20-compliant. ERC-20 has many benefits, including unifying token wallets and ability for exchanges to list more tokens by providing nothing more than the address of the token’s contract.
// ----------------------------------------------------------------------------
// ERC Token Standard #20 Interface
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
// ----------------------------------------------------------------------------
contract ERC20Interface {
function totalSupply() public constant returns (uint);
function balanceOf(address tokenOwner) public constant returns (uint balance);
function allowance(address tokenOwner, address spender) public constant returns (uint remaining);
function transfer(address to, uint tokens) public returns (bool success);
function approve(address spender, uint tokens) public returns (bool success);
function transferFrom(address from, address to, uint tokens) public returns (bool success);
event Transfer(address indexed from, address indexed to, uint tokens);
event Approval(address indexed tokenOwner, address indexed spender, uint tokens);
}
Essentially, an Ethereum token contract is a smart contract that holds a map of account addresses and their balances. The balance is a value that is defined by the contract creator - in can be fungible physical objects, another monetary value. The unit of this balance is commonly called a token.
ERC20 functions do:
-
balanceOf
: returns the token balance of an owner identifier (account address in case of Ethereum) -
transfer
: transfers an amount to an owner identifier of our choosing -
approve
: sets an amount of tokens a specified owner identifier is allowed to spend on our behalf -
allowance
: check how much an owner identifier is allowed to spend on our behalf -
transferFrom
: specify an owner identifier to transfer from if we are allowed by that owner identifier to spend some tokens.
In the Hyperledger Fabric network, all actors have an identity known to other participants. The default Membership Service Provider implementation uses X.509 certificates as identities, adopting a traditional Public Key Infrastructure (PKI) hierarchical model.
Using information about creator of a proposal and asset ownership the chaincode should be able implement chaincode-level access control mechanisms checking is actor can initiate transactions that update the asset. The corresponding chaincode logic has to be able to store this "ownership" information associated with the asset and evaluate it with respect to the proposal creator.
In HLF network as unique owner identifier (token balance holder) we can use combination of MSP Identifier and user
identity identifier. Identity identifier - is concatenation of Subject
and Issuer
parts of X.509 certificate.
This ID is guaranteed to be unique within the MSP.
func (c *clientIdentityImpl) GetID() (string, error) {
// The leading "x509::" distinquishes this as an X509 certificate, and
// the subject and issuer DNs uniquely identify the X509 certificate.
// The resulting ID will remain the same if the certificate is renewed.
id := fmt.Sprintf("x509::%s::%s", getDN(&c.cert.Subject), getDN(&c.cert.Issuer))
return base64.StdEncoding.EncodeToString([]byte(id)), nil
}
Client identity chaincode library allows to write chaincode which makes access control decisions based on the identity of the client (i.e. the invoker of the chaincode).
In particular, you may make access control decisions based on either or both of the following associated with the client:
- the client identity's MSP (Membership Service Provider) ID
- an attribute associated with the client identity
CCkit contains identity package with structures and functions can that be used for implementing access control in chaincode.
In our example we use CCKit router for managing smart contract functions. Before you begin, be sure to get CCkit
:
git clone git@github.com:s7techlab/cckit.git
and get dependencies using go mod
command:
go mod vendor
ERC20 example is located in examples/erc20 directory.
First, we need to define chaincode functions. In our example we use router package from CCkit, that allows us to define chaincode methods and their parameters in consistent way.
At first we define init
function (smart contract constructor) with arguments symbol
, name
and totalSupply
.
After that we define chaincode methods, implementing ERC20 interface, adopted to HLF owner identifiers
(pair of MSP Id and certificate ID). All querying method are prefixed with query
, all writing to state methods are prefixed with
invoke
.
As a result we use default chaincode structure,
that delegates Init
and Invoke
handling to router.
func NewErc20FixedSupply() *router.Chaincode {
r := router.New(`erc20fixedSupply`).Use(p.StrictKnown).
// Chaincode init function, initiates token smart contract with token symbol, name and totalSupply
Init(invokeInitFixedSupply, p.String(`symbol`), p.String(`name`), p.Int(`totalSupply`)).
// Get token symbol
Query(`symbol`, querySymbol).
// Get token name
Query(`name`, queryName).
// Get the total token supply
Query(`totalSupply`, queryTotalSupply).
// get account balance
Query(`balanceOf`, queryBalanceOf, p.String(`mspId`), p.String(`certId`)).
//Send value amount of tokens
Invoke(`transfer`, invokeTransfer, p.String(`toMspId`), p.String(`toCertId`), p.Int(`amount`)).
// Allow spender to withdraw from your account, multiple times, up to the _value amount.
// If this function is called again it overwrites the current allowance with _valu
Invoke(`approve`, invokeApprove, p.String(`spenderMspId`), p.String(`spenderCertId`), p.Int(`amount`)).
// Returns the amount which _spender is still allowed to withdraw from _owner]
Invoke(`allowance`, queryAllowance, p.String(`ownerMspId`), p.String(`ownerCertId`),
p.String(`spenderMspId`), p.String(`spenderCertId`)).
// Send amount of tokens from owner account to another
Invoke(`transferFrom`, invokeTransferFrom, p.String(`fromMspId`), p.String(`fromCertId`),
p.String(`toMspId`), p.String(`toCertId`), p.Int(`amount`))
return router.NewChaincode(r)
}
Chaincode init
function (token constructor) performs the following actions:
- puts to chaincode state information about chaincode owner, using owner extension from CCkit
- puts to chaincode state token configuration - token symbol, name and total supply
- sets chaincode owner balance with total supply
const SymbolKey = `symbol`
const NameKey = `name`
const TotalSupplyKey = `totalSupply`
func invokeInitFixedSupply(c router.Context) (interface{}, error) {
ownerIdentity, err := owner.SetFromCreator(c)
if err != nil {
return nil, errors.Wrap(err, `set chaincode owner`)
}
// save token configuration in state
if err := c.State().Insert(SymbolKey, c.ArgString(`symbol`)); err != nil {
return nil, err
}
if err := c.State().Insert(NameKey, c.ArgString(`name`)); err != nil {
return nil, err
}
if err := c.State().Insert(TotalSupplyKey, c.ArgInt(`totalSupply`)); err != nil {
return nil, err
}
// set token owner initial balance
if err := setBalance(c, ownerIdentity.GetMSPID(), ownerIdentity.GetID(), c.ArgInt(`totalSupply`)); err != nil {
return nil, errors.Wrap(err, `set owner initial balance`)
}
return ownerIdentity, nil
}
We use Id structure from identity package:
// Id structure defines short id representation
type Id struct {
MSP string
Cert string
}
And define structures for Transfer
and Approve
event:
type (
Transfer struct {
From identity.Id
To identity.Id
Amount int
}
Approve struct {
From identity.Id
Spender identity.Id
Amount int
}
)
Querying function is quite simple - it's just read value from chaincode state:
const SymbolKey = `symbol`
func querySymbol(c r.Context) (interface{}, error) {
return c.State().Get(SymbolKey)
}
Some of changing state functions are more complicated. For example in function invokeTransfer
we do:
- receive function invoker certificate (via tx
GetCreator()
function) - check transfer destination
- get current invoker (payer) balance
- check balance to transfer
amount
of tokens - get recipient balance
- update payer and recipient balances in chaincode state
func invokeTransfer(c r.Context) (interface{}, error) {
// transfer target
toMspId := c.ArgString(`toMspId`)
toCertId := c.ArgString(`toCertId`)
//transfer amount
amount := c.ArgInt(`amount`)
// get informartion about tx creator
invoker, err := identity.FromStub(c.Stub())
if err != nil {
return nil, err
}
// Disallow to transfer token to same account
if invoker.GetMSPID() == toMspId && invoker.GetID() == toCertId {
return nil, ErrForbiddenToTransferToSameAccount
}
// get information about invoker balance from state
invokerBalance, err := getBalance(c, invoker.GetMSPID(), invoker.GetID())
if err != nil {
return nil, err
}
// Check the funds sufficiency
if invokerBalance-amount < 0 {
return nil, ErrNotEnoughFunds
}
// Get information about recipient balance from state
recipientBalance, err := getBalance(c, toMspId, toCertId)
if err != nil {
return nil, err
}
// Update payer and recipient balance
setBalance(c, invoker.GetMSPID(), invoker.GetID(), invokerBalance-amount)
setBalance(c, toMspId, toCertId, recipientBalance+amount)
// Trigger event with name "transfer" and payload - serialized to json Transfer structure
c.SetEvent(`transfer`, &Transfer{
From: identity.Id{
MSP: invoker.GetMSPID(),
Cert: invoker.GetID(),
},
To: identity.Id{
MSP: toMspId,
Cert: toCertId,
},
Amount: amount,
})
// return current invoker balance
return invokerBalance - amount, nil
}
// setBalance puts balance value to state
func setBalance(c r.Context, mspId, certId string, balance int) error {
return c.State().Put(balanceKey(mspId, certId), balance)
}
// balanceKey creates composite key for store balance value in state
func balanceKey(ownerMspId, ownerCertId string) []string {
return []string{BalancePrefix, ownerMspId, ownerCertId}
}
Also, we can fast test our chaincode via CCkit MockStub.
To start testing we init chaincode via MockStub with test parameters:
var _ = Describe(`ERC-20`, func() {
const TokenSymbol = `HLF`
const TokenName = `HLFCoin`
const TotalSupply = 10000
const Decimals = 3
//Create chaincode mock
erc20fs := testcc.NewMockStub(`erc20`, NewErc20FixedSupply())
// load actor certificates
actors, err := identity.ActorsFromPemFile(`SOME_MSP`, map[string]string{
`token_owner`: `s7techlab.pem`,
`account_holder1`: `victor-nosov.pem`,
//`accoubt_holder2`: `victor-nosov.pem`
}, examplecert.Content)
if err != nil {
panic(err)
}
BeforeSuite(func() {
// init token haincode
expectcc.ResponseOk(erc20fs.From(actors[`token_owner`]).Init(TokenSymbol, TokenName, TotalSupply, Decimals))
})
After we can check all token operations:
Describe("ERC-20 transfer", func() {
It("Disallow to transfer token to same account", func() {
expectcc.ResponseError(
erc20fs.From(actors[`token_owner`]).Invoke(
`transfer`, actors[`token_owner`].GetMSPID(), actors[`token_owner`].GetID(), 100),
ErrForbiddenToTransferToSameAccount)
})
It("Disallow token holder with zero balance to transfer tokens", func() {
expectcc.ResponseError(
erc20fs.From(actors[`account_holder1`]).Invoke(
`transfer`, actors[`token_owner`].GetMSPID(), actors[`token_owner`].GetID(), 100),
ErrNotEnoughFunds)
})
It("Allow token holder with non zero balance to transfer tokens", func() {
expectcc.PayloadInt(
erc20fs.From(actors[`token_owner`]).Invoke(
`transfer`, actors[`account_holder1`].GetMSPID(), actors[`account_holder1`].GetID(), 100),
TotalSupply-100)
expectcc.PayloadInt(
erc20fs.Query(
`balanceOf`, actors[`token_owner`].GetMSPID(), actors[`token_owner`].GetID()), TotalSupply-100)
expectcc.PayloadInt(
erc20fs.Query(
`balanceOf`, actors[`account_holder1`].GetMSPID(), actors[`account_holder1`].GetID()), 100)
})
})