-
Notifications
You must be signed in to change notification settings - Fork 141
/
GDN.py
188 lines (120 loc) · 5.7 KB
/
GDN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import time
from util.time import *
from util.env import *
from torch_geometric.nn import GCNConv, GATConv, EdgeConv
import math
import torch.nn.functional as F
from .graph_layer import GraphLayer
def get_batch_edge_index(org_edge_index, batch_num, node_num):
# org_edge_index:(2, edge_num)
edge_index = org_edge_index.clone().detach()
edge_num = org_edge_index.shape[1]
batch_edge_index = edge_index.repeat(1,batch_num).contiguous()
for i in range(batch_num):
batch_edge_index[:, i*edge_num:(i+1)*edge_num] += i*node_num
return batch_edge_index.long()
class OutLayer(nn.Module):
def __init__(self, in_num, node_num, layer_num, inter_num = 512):
super(OutLayer, self).__init__()
modules = []
for i in range(layer_num):
# last layer, output shape:1
if i == layer_num-1:
modules.append(nn.Linear( in_num if layer_num == 1 else inter_num, 1))
else:
layer_in_num = in_num if i == 0 else inter_num
modules.append(nn.Linear( layer_in_num, inter_num ))
modules.append(nn.BatchNorm1d(inter_num))
modules.append(nn.ReLU())
self.mlp = nn.ModuleList(modules)
def forward(self, x):
out = x
for mod in self.mlp:
if isinstance(mod, nn.BatchNorm1d):
out = out.permute(0,2,1)
out = mod(out)
out = out.permute(0,2,1)
else:
out = mod(out)
return out
class GNNLayer(nn.Module):
def __init__(self, in_channel, out_channel, inter_dim=0, heads=1, node_num=100):
super(GNNLayer, self).__init__()
self.gnn = GraphLayer(in_channel, out_channel, inter_dim=inter_dim, heads=heads, concat=False)
self.bn = nn.BatchNorm1d(out_channel)
self.relu = nn.ReLU()
self.leaky_relu = nn.LeakyReLU()
def forward(self, x, edge_index, embedding=None, node_num=0):
out, (new_edge_index, att_weight) = self.gnn(x, edge_index, embedding, return_attention_weights=True)
self.att_weight_1 = att_weight
self.edge_index_1 = new_edge_index
out = self.bn(out)
return self.relu(out)
class GDN(nn.Module):
def __init__(self, edge_index_sets, node_num, dim=64, out_layer_inter_dim=256, input_dim=10, out_layer_num=1, topk=20):
super(GDN, self).__init__()
self.edge_index_sets = edge_index_sets
device = get_device()
edge_index = edge_index_sets[0]
embed_dim = dim
self.embedding = nn.Embedding(node_num, embed_dim)
self.bn_outlayer_in = nn.BatchNorm1d(embed_dim)
edge_set_num = len(edge_index_sets)
self.gnn_layers = nn.ModuleList([
GNNLayer(input_dim, dim, inter_dim=dim+embed_dim, heads=1) for i in range(edge_set_num)
])
self.node_embedding = None
self.topk = topk
self.learned_graph = None
self.out_layer = OutLayer(dim*edge_set_num, node_num, out_layer_num, inter_num = out_layer_inter_dim)
self.cache_edge_index_sets = [None] * edge_set_num
self.cache_embed_index = None
self.dp = nn.Dropout(0.2)
self.init_params()
def init_params(self):
nn.init.kaiming_uniform_(self.embedding.weight, a=math.sqrt(5))
def forward(self, data, org_edge_index):
x = data.clone().detach()
edge_index_sets = self.edge_index_sets
device = data.device
batch_num, node_num, all_feature = x.shape
x = x.view(-1, all_feature).contiguous()
gcn_outs = []
for i, edge_index in enumerate(edge_index_sets):
edge_num = edge_index.shape[1]
cache_edge_index = self.cache_edge_index_sets[i]
if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num:
self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device)
batch_edge_index = self.cache_edge_index_sets[i]
all_embeddings = self.embedding(torch.arange(node_num).to(device))
weights_arr = all_embeddings.detach().clone()
all_embeddings = all_embeddings.repeat(batch_num, 1)
weights = weights_arr.view(node_num, -1)
cos_ji_mat = torch.matmul(weights, weights.T)
normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1))
cos_ji_mat = cos_ji_mat / normed_mat
dim = weights.shape[-1]
topk_num = self.topk
topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1]
self.learned_graph = topk_indices_ji
gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0)
gated_j = topk_indices_ji.flatten().unsqueeze(0)
gated_edge_index = torch.cat((gated_j, gated_i), dim=0)
batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device)
gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings)
gcn_outs.append(gcn_out)
x = torch.cat(gcn_outs, dim=1)
x = x.view(batch_num, node_num, -1)
indexes = torch.arange(0,node_num).to(device)
out = torch.mul(x, self.embedding(indexes))
out = out.permute(0,2,1)
out = F.relu(self.bn_outlayer_in(out))
out = out.permute(0,2,1)
out = self.dp(out)
out = self.out_layer(out)
out = out.view(-1, node_num)
return out