forked from quic-go/quic-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transport.go
579 lines (520 loc) · 19.1 KB
/
transport.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
package quic
import (
"context"
"crypto/rand"
"crypto/tls"
"errors"
"math"
"net"
"sync"
"sync/atomic"
"time"
"github.com/danielpfeifer02/quic-go-prio-packs/internal/protocol"
"github.com/danielpfeifer02/quic-go-prio-packs/internal/utils"
"github.com/danielpfeifer02/quic-go-prio-packs/internal/wire"
"github.com/danielpfeifer02/quic-go-prio-packs/logging"
)
var errListenerAlreadySet = errors.New("listener already set")
const (
// defaultMaxNumUnvalidatedHandshakes is the default value for Transport.MaxUnvalidatedHandshakes.
defaultMaxNumUnvalidatedHandshakes = 128
// defaultMaxNumHandshakes is the default value for Transport.MaxHandshakes.
// It's not clear how to choose a reasonable value that works for all use cases.
// In production, implementations should:
// 1. Choose a lower value.
// 2. Implement some kind of IP-address based filtering using the Config.GetConfigForClient
// callback in order to prevent flooding attacks from a single / small number of IP addresses.
defaultMaxNumHandshakes = math.MaxInt32
)
// The Transport is the central point to manage incoming and outgoing QUIC connections.
// QUIC demultiplexes connections based on their QUIC Connection IDs, not based on the 4-tuple.
// This means that a single UDP socket can be used for listening for incoming connections, as well as
// for dialing an arbitrary number of outgoing connections.
// A Transport handles a single net.PacketConn, and offers a range of configuration options
// compared to the simple helper functions like Listen and Dial that this package provides.
type Transport struct {
// A single net.PacketConn can only be handled by one Transport.
// Bad things will happen if passed to multiple Transports.
//
// A number of optimizations will be enabled if the connections implements the OOBCapablePacketConn interface,
// as a *net.UDPConn does.
// 1. It enables the Don't Fragment (DF) bit on the IP header.
// This is required to run DPLPMTUD (Path MTU Discovery, RFC 8899).
// 2. It enables reading of the ECN bits from the IP header.
// This allows the remote node to speed up its loss detection and recovery.
// 3. It uses batched syscalls (recvmmsg) to more efficiently receive packets from the socket.
// 4. It uses Generic Segmentation Offload (GSO) to efficiently send batches of packets (on Linux).
//
// After passing the connection to the Transport, it's invalid to call ReadFrom or WriteTo on the connection.
Conn net.PacketConn
// The length of the connection ID in bytes.
// It can be any value between 1 and 20.
// Due to the increased risk of collisions, it is not recommended to use connection IDs shorter than 4 bytes.
// If unset, a 4 byte connection ID will be used.
ConnectionIDLength int
// Use for generating new connection IDs.
// This allows the application to control of the connection IDs used,
// which allows routing / load balancing based on connection IDs.
// All Connection IDs returned by the ConnectionIDGenerator MUST
// have the same length.
ConnectionIDGenerator ConnectionIDGenerator
// The StatelessResetKey is used to generate stateless reset tokens.
// If no key is configured, sending of stateless resets is disabled.
// It is highly recommended to configure a stateless reset key, as stateless resets
// allow the peer to quickly recover from crashes and reboots of this node.
// See section 10.3 of RFC 9000 for details.
StatelessResetKey *StatelessResetKey
// The TokenGeneratorKey is used to encrypt session resumption tokens.
// If no key is configured, a random key will be generated.
// If multiple servers are authoritative for the same domain, they should use the same key,
// see section 8.1.3 of RFC 9000 for details.
TokenGeneratorKey *TokenGeneratorKey
// MaxTokenAge is the maximum age of the resumption token presented during the handshake.
// These tokens allow skipping address resumption when resuming a QUIC connection,
// and are especially useful when using 0-RTT.
// If not set, it defaults to 24 hours.
// See section 8.1.3 of RFC 9000 for details.
MaxTokenAge time.Duration
// DisableVersionNegotiationPackets disables the sending of Version Negotiation packets.
// This can be useful if version information is exchanged out-of-band.
// It has no effect for clients.
DisableVersionNegotiationPackets bool
// MaxUnvalidatedHandshakes is the maximum number of concurrent incoming QUIC handshakes
// originating from unvalidated source addresses.
// If the number of handshakes from unvalidated addresses reaches this number, new incoming
// connection attempts will need to proof reachability at the respective source address using the
// Retry mechanism, as described in RFC 9000 section 8.1.2.
// Validating the source address adds one additional network roundtrip to the handshake.
// If unset, a default value of 128 will be used.
// When set to a negative value, every connection attempt will need to validate the source address.
// It does not make sense to set this value higher than MaxHandshakes.
MaxUnvalidatedHandshakes int
// MaxHandshakes is the maximum number of concurrent incoming handshakes, both from validated
// and unvalidated source addresses.
// If unset, the number of concurrent handshakes will not be limited.
// Applications should choose a reasonable value based on their thread model, and consider
// implementing IP-based rate limiting using Config.GetConfigForClient.
// If the number of handshakes reaches this number, new connection attempts will be rejected by
// terminating the connection attempt using a CONNECTION_REFUSED error.
MaxHandshakes int
// A Tracer traces events that don't belong to a single QUIC connection.
// Tracer.Close is called when the transport is closed.
Tracer *logging.Tracer
handlerMap packetHandlerManager
mutex sync.Mutex
initOnce sync.Once
initErr error
// Set in init.
// If no ConnectionIDGenerator is set, this is the ConnectionIDLength.
connIDLen int
// Set in init.
// If no ConnectionIDGenerator is set, this is set to a default.
connIDGenerator ConnectionIDGenerator
server *baseServer
conn rawConn
closeQueue chan closePacket
statelessResetQueue chan receivedPacket
listening chan struct{} // is closed when listen returns
closed bool
createdConn bool
isSingleUse bool // was created for a single server or client, i.e. by calling quic.Listen or quic.Dial
readingNonQUICPackets atomic.Bool
nonQUICPackets chan receivedPacket
logger utils.Logger
}
// Listen starts listening for incoming QUIC connections.
// There can only be a single listener on any net.PacketConn.
// Listen may only be called again after the current Listener was closed.
func (t *Transport) Listen(tlsConf *tls.Config, conf *Config) (*Listener, error) {
s, err := t.createServer(tlsConf, conf, false)
if err != nil {
return nil, err
}
return &Listener{baseServer: s}, nil
}
// ListenEarly starts listening for incoming QUIC connections.
// There can only be a single listener on any net.PacketConn.
// Listen may only be called again after the current Listener was closed.
func (t *Transport) ListenEarly(tlsConf *tls.Config, conf *Config) (*EarlyListener, error) {
s, err := t.createServer(tlsConf, conf, true)
if err != nil {
return nil, err
}
return &EarlyListener{baseServer: s}, nil
}
func (t *Transport) createServer(tlsConf *tls.Config, conf *Config, allow0RTT bool) (*baseServer, error) {
if tlsConf == nil {
return nil, errors.New("quic: tls.Config not set")
}
if err := validateConfig(conf); err != nil {
return nil, err
}
t.mutex.Lock()
defer t.mutex.Unlock()
if t.server != nil {
return nil, errListenerAlreadySet
}
conf = populateConfig(conf)
if err := t.init(false); err != nil {
return nil, err
}
maxUnvalidatedHandshakes := t.MaxUnvalidatedHandshakes
if maxUnvalidatedHandshakes == 0 {
maxUnvalidatedHandshakes = defaultMaxNumUnvalidatedHandshakes
}
maxHandshakes := t.MaxHandshakes
if maxHandshakes == 0 {
maxHandshakes = defaultMaxNumHandshakes
}
s := newServer(
t.conn,
t.handlerMap,
t.connIDGenerator,
tlsConf,
conf,
t.Tracer,
t.closeServer,
*t.TokenGeneratorKey,
t.MaxTokenAge,
maxUnvalidatedHandshakes,
maxHandshakes,
t.DisableVersionNegotiationPackets,
allow0RTT,
)
t.server = s
return s, nil
}
// Dial dials a new connection to a remote host (not using 0-RTT).
func (t *Transport) Dial(ctx context.Context, addr net.Addr, tlsConf *tls.Config, conf *Config) (Connection, error) {
return t.dial(ctx, addr, "", tlsConf, conf, false)
}
// DialEarly dials a new connection, attempting to use 0-RTT if possible.
func (t *Transport) DialEarly(ctx context.Context, addr net.Addr, tlsConf *tls.Config, conf *Config) (EarlyConnection, error) {
return t.dial(ctx, addr, "", tlsConf, conf, true)
}
func (t *Transport) dial(ctx context.Context, addr net.Addr, host string, tlsConf *tls.Config, conf *Config, use0RTT bool) (EarlyConnection, error) {
if err := validateConfig(conf); err != nil {
return nil, err
}
conf = populateConfig(conf)
if err := t.init(t.isSingleUse); err != nil {
return nil, err
}
var onClose func()
if t.isSingleUse {
onClose = func() { t.Close() }
}
tlsConf = tlsConf.Clone()
setTLSConfigServerName(tlsConf, addr, host)
return dial(ctx, newSendConn(t.conn, addr, packetInfo{}, utils.DefaultLogger), t.connIDGenerator, t.handlerMap, tlsConf, conf, onClose, use0RTT)
}
func (t *Transport) init(allowZeroLengthConnIDs bool) error {
t.initOnce.Do(func() {
var conn rawConn
if c, ok := t.Conn.(rawConn); ok {
conn = c
} else {
var err error
conn, err = wrapConn(t.Conn)
if err != nil {
t.initErr = err
return
}
}
t.logger = utils.DefaultLogger // TODO: make this configurable
t.conn = conn
t.handlerMap = newPacketHandlerMap(t.StatelessResetKey, t.enqueueClosePacket, t.logger)
t.listening = make(chan struct{})
t.closeQueue = make(chan closePacket, 4)
t.statelessResetQueue = make(chan receivedPacket, 4)
if t.TokenGeneratorKey == nil {
var key TokenGeneratorKey
if _, err := rand.Read(key[:]); err != nil {
t.initErr = err
return
}
t.TokenGeneratorKey = &key
}
if t.ConnectionIDGenerator != nil {
t.connIDGenerator = t.ConnectionIDGenerator
t.connIDLen = t.ConnectionIDGenerator.ConnectionIDLen()
} else {
connIDLen := t.ConnectionIDLength
if t.ConnectionIDLength == 0 && !allowZeroLengthConnIDs {
connIDLen = protocol.DefaultConnectionIDLength
}
t.connIDLen = connIDLen
// PRIO_PACKS_TAG
// PriorityCounter has to start at once since if we start at 0 (i.e. low prio)
// and we have a high prio packet it is gonna get drupped, which is worse than
// not dropping a low prio packet.
// Once the connection has more than 1 connection IDs this problem is gone.
// TODOME: temporary fix, remove once we have a better solution
t.connIDLen = 16
t.connIDGenerator = &protocol.PriorityConnectionIDGenerator{ConnLen: t.connIDLen, PriorityCounter: 1, NumberOfPriorities: 2}
}
getMultiplexer().AddConn(t.Conn)
go t.listen(conn)
go t.runSendQueue()
})
return t.initErr
}
// WriteTo sends a packet on the underlying connection.
func (t *Transport) WriteTo(b []byte, addr net.Addr) (int, error) {
if err := t.init(false); err != nil {
return 0, err
}
return t.conn.WritePacket(b, addr, nil, 0, protocol.ECNUnsupported)
}
func (t *Transport) enqueueClosePacket(p closePacket) {
select {
case t.closeQueue <- p:
default:
// Oops, we're backlogged.
// Just drop the packet, sending CONNECTION_CLOSE copies is best effort anyway.
}
}
func (t *Transport) runSendQueue() {
for {
select {
case <-t.listening:
return
case p := <-t.closeQueue:
t.conn.WritePacket(p.payload, p.addr, p.info.OOB(), 0, protocol.ECNUnsupported)
case p := <-t.statelessResetQueue:
t.sendStatelessReset(p)
}
}
}
// Close closes the underlying connection.
// If any listener was started, it will be closed as well.
// It is invalid to start new listeners or connections after that.
func (t *Transport) Close() error {
t.close(errors.New("closing"))
if t.createdConn {
if err := t.Conn.Close(); err != nil {
return err
}
} else if t.conn != nil {
t.conn.SetReadDeadline(time.Now())
defer func() { t.conn.SetReadDeadline(time.Time{}) }()
}
if t.listening != nil {
<-t.listening // wait until listening returns
}
return nil
}
func (t *Transport) closeServer() {
t.mutex.Lock()
t.server = nil
if t.isSingleUse {
t.closed = true
}
t.mutex.Unlock()
if t.createdConn {
t.Conn.Close()
}
if t.isSingleUse {
t.conn.SetReadDeadline(time.Now())
defer func() { t.conn.SetReadDeadline(time.Time{}) }()
<-t.listening // wait until listening returns
}
}
func (t *Transport) close(e error) {
t.mutex.Lock()
defer t.mutex.Unlock()
if t.closed {
return
}
if t.handlerMap != nil {
t.handlerMap.Close(e)
}
if t.server != nil {
t.server.close(e, false)
}
if t.Tracer != nil && t.Tracer.Close != nil {
t.Tracer.Close()
}
t.closed = true
}
// only print warnings about the UDP receive buffer size once
var setBufferWarningOnce sync.Once
func (t *Transport) listen(conn rawConn) {
defer close(t.listening)
defer getMultiplexer().RemoveConn(t.Conn)
for {
p, err := conn.ReadPacket()
//nolint:staticcheck // SA1019 ignore this!
// TODO: This code is used to ignore wsa errors on Windows.
// Since net.Error.Temporary is deprecated as of Go 1.18, we should find a better solution.
// See https://github.com/danielpfeifer02/quic-go-prio-packs/issues/1737 for details.
if nerr, ok := err.(net.Error); ok && nerr.Temporary() {
t.mutex.Lock()
closed := t.closed
t.mutex.Unlock()
if closed {
return
}
t.logger.Debugf("Temporary error reading from conn: %w", err)
continue
}
if err != nil {
// Windows returns an error when receiving a UDP datagram that doesn't fit into the provided buffer.
if isRecvMsgSizeErr(err) {
continue
}
t.close(err)
return
}
t.handlePacket(p)
}
}
func (t *Transport) handlePacket(p receivedPacket) {
if len(p.data) == 0 {
return
}
if !wire.IsPotentialQUICPacket(p.data[0]) && !wire.IsLongHeaderPacket(p.data[0]) {
t.handleNonQUICPacket(p)
return
}
connID, err := wire.ParseConnectionID(p.data, t.connIDLen)
if err != nil {
t.logger.Debugf("error parsing connection ID on packet from %s: %s", p.remoteAddr, err)
if t.Tracer != nil && t.Tracer.DroppedPacket != nil {
t.Tracer.DroppedPacket(p.remoteAddr, logging.PacketTypeNotDetermined, p.Size(), logging.PacketDropHeaderParseError)
}
p.buffer.MaybeRelease()
return
}
// If there's a connection associated with the connection ID, pass the packet there.
if handler, ok := t.handlerMap.Get(connID); ok {
handler.handlePacket(p)
return
}
// RFC 9000 section 10.3.1 requires that the stateless reset detection logic is run for both
// packets that cannot be associated with any connections, and for packets that can't be decrypted.
// We deviate from the RFC and ignore the latter: If a packet's connection ID is associated with an
// existing connection, it is dropped there if if it can't be decrypted.
// Stateless resets use random connection IDs, and at reasonable connection ID lengths collisions are
// exceedingly rare. In the unlikely event that a stateless reset is misrouted to an existing connection,
// it is to be expected that the next stateless reset will be correctly detected.
if isStatelessReset := t.maybeHandleStatelessReset(p.data); isStatelessReset {
return
}
if !wire.IsLongHeaderPacket(p.data[0]) {
t.maybeSendStatelessReset(p)
return
}
t.mutex.Lock()
defer t.mutex.Unlock()
if t.server == nil { // no server set
t.logger.Debugf("received a packet with an unexpected connection ID %s", connID)
return
}
t.server.handlePacket(p)
}
func (t *Transport) maybeSendStatelessReset(p receivedPacket) {
if t.StatelessResetKey == nil {
p.buffer.Release()
return
}
// Don't send a stateless reset in response to very small packets.
// This includes packets that could be stateless resets.
if len(p.data) <= protocol.MinStatelessResetSize {
p.buffer.Release()
return
}
select {
case t.statelessResetQueue <- p:
default:
// it's fine to not send a stateless reset when we're busy
p.buffer.Release()
}
}
func (t *Transport) sendStatelessReset(p receivedPacket) {
defer p.buffer.Release()
connID, err := wire.ParseConnectionID(p.data, t.connIDLen)
if err != nil {
t.logger.Errorf("error parsing connection ID on packet from %s: %s", p.remoteAddr, err)
return
}
token := t.handlerMap.GetStatelessResetToken(connID)
t.logger.Debugf("Sending stateless reset to %s (connection ID: %s). Token: %#x", p.remoteAddr, connID, token)
data := make([]byte, protocol.MinStatelessResetSize-16, protocol.MinStatelessResetSize)
rand.Read(data)
data[0] = (data[0] & 0x7f) | 0x40
data = append(data, token[:]...)
if _, err := t.conn.WritePacket(data, p.remoteAddr, p.info.OOB(), 0, protocol.ECNUnsupported); err != nil {
t.logger.Debugf("Error sending Stateless Reset to %s: %s", p.remoteAddr, err)
}
}
func (t *Transport) maybeHandleStatelessReset(data []byte) bool {
// stateless resets are always short header packets
if wire.IsLongHeaderPacket(data[0]) {
return false
}
if len(data) < 17 /* type byte + 16 bytes for the reset token */ {
return false
}
token := *(*protocol.StatelessResetToken)(data[len(data)-16:])
if conn, ok := t.handlerMap.GetByResetToken(token); ok {
t.logger.Debugf("Received a stateless reset with token %#x. Closing connection.", token)
go conn.destroy(&StatelessResetError{Token: token})
return true
}
return false
}
func (t *Transport) handleNonQUICPacket(p receivedPacket) {
// Strictly speaking, this is racy,
// but we only care about receiving packets at some point after ReadNonQUICPacket has been called.
if !t.readingNonQUICPackets.Load() {
return
}
select {
case t.nonQUICPackets <- p:
default:
if t.Tracer != nil && t.Tracer.DroppedPacket != nil {
t.Tracer.DroppedPacket(p.remoteAddr, logging.PacketTypeNotDetermined, p.Size(), logging.PacketDropDOSPrevention)
}
}
}
const maxQueuedNonQUICPackets = 32
// ReadNonQUICPacket reads non-QUIC packets received on the underlying connection.
// The detection logic is very simple: Any packet that has the first and second bit of the packet set to 0.
// Note that this is stricter than the detection logic defined in RFC 9443.
func (t *Transport) ReadNonQUICPacket(ctx context.Context, b []byte) (int, net.Addr, error) {
if err := t.init(false); err != nil {
return 0, nil, err
}
if !t.readingNonQUICPackets.Load() {
t.nonQUICPackets = make(chan receivedPacket, maxQueuedNonQUICPackets)
t.readingNonQUICPackets.Store(true)
}
select {
case <-ctx.Done():
return 0, nil, ctx.Err()
case p := <-t.nonQUICPackets:
n := copy(b, p.data)
return n, p.remoteAddr, nil
case <-t.listening:
return 0, nil, errors.New("closed")
}
}
func setTLSConfigServerName(tlsConf *tls.Config, addr net.Addr, host string) {
// If no ServerName is set, infer the ServerName from the host we're connecting to.
if tlsConf.ServerName != "" {
return
}
if host == "" {
if udpAddr, ok := addr.(*net.UDPAddr); ok {
tlsConf.ServerName = udpAddr.IP.String()
return
}
}
h, _, err := net.SplitHostPort(host)
if err != nil { // This happens if the host doesn't contain a port number.
tlsConf.ServerName = host
return
}
tlsConf.ServerName = h
}