forked from hashicorp/vault
-
Notifications
You must be signed in to change notification settings - Fork 2
/
helpers.go
277 lines (245 loc) · 8.26 KB
/
helpers.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
package certutil
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/x509"
"encoding/pem"
"fmt"
"math/big"
"strconv"
"strings"
"github.com/hashicorp/vault/helper/errutil"
"github.com/hashicorp/vault/helper/jsonutil"
"github.com/mitchellh/mapstructure"
)
// GetHexFormatted returns the byte buffer formatted in hex with
// the specified separator between bytes.
func GetHexFormatted(buf []byte, sep string) string {
var ret bytes.Buffer
for _, cur := range buf {
if ret.Len() > 0 {
fmt.Fprintf(&ret, sep)
}
fmt.Fprintf(&ret, "%02x", cur)
}
return ret.String()
}
func ParseHexFormatted(in, sep string) []byte {
var ret bytes.Buffer
var err error
var inBits int64
inBytes := strings.Split(in, sep)
for _, inByte := range inBytes {
if inBits, err = strconv.ParseInt(inByte, 16, 8); err != nil {
return nil
} else {
ret.WriteByte(byte(inBits))
}
}
return ret.Bytes()
}
// GetSubjKeyID returns the subject key ID, e.g. the SHA1 sum
// of the marshaled public key
func GetSubjKeyID(privateKey crypto.Signer) ([]byte, error) {
if privateKey == nil {
return nil, errutil.InternalError{"passed-in private key is nil"}
}
marshaledKey, err := x509.MarshalPKIXPublicKey(privateKey.Public())
if err != nil {
return nil, errutil.InternalError{fmt.Sprintf("error marshalling public key: %s", err)}
}
subjKeyID := sha1.Sum(marshaledKey)
return subjKeyID[:], nil
}
// ParsePKIMap takes a map (for instance, the Secret.Data
// returned from the PKI backend) and returns a ParsedCertBundle.
func ParsePKIMap(data map[string]interface{}) (*ParsedCertBundle, error) {
result := &CertBundle{}
err := mapstructure.Decode(data, result)
if err != nil {
return nil, errutil.UserError{err.Error()}
}
return result.ToParsedCertBundle()
}
// ParsePKIJSON takes a JSON-encoded string and returns a ParsedCertBundle.
//
// This can be either the output of an
// issue call from the PKI backend or just its data member; or,
// JSON not coming from the PKI backend.
func ParsePKIJSON(input []byte) (*ParsedCertBundle, error) {
result := &CertBundle{}
err := jsonutil.DecodeJSON(input, &result)
if err == nil {
return result.ToParsedCertBundle()
}
var secret Secret
err = jsonutil.DecodeJSON(input, &secret)
if err == nil {
return ParsePKIMap(secret.Data)
}
return nil, errutil.UserError{"unable to parse out of either secret data or a secret object"}
}
// ParsePEMBundle takes a string of concatenated PEM-format certificate
// and private key values and decodes/parses them, checking validity along
// the way. There must be at max two certificates (a certificate and its
// issuing certificate) and one private key.
func ParsePEMBundle(pemBundle string) (*ParsedCertBundle, error) {
if len(pemBundle) == 0 {
return nil, errutil.UserError{"empty pem bundle"}
}
pemBundle = strings.TrimSpace(pemBundle)
pemBytes := []byte(pemBundle)
var pemBlock *pem.Block
parsedBundle := &ParsedCertBundle{}
var certPath []*CertBlock
for len(pemBytes) > 0 {
pemBlock, pemBytes = pem.Decode(pemBytes)
if pemBlock == nil {
return nil, errutil.UserError{"no data found"}
}
if signer, err := x509.ParseECPrivateKey(pemBlock.Bytes); err == nil {
if parsedBundle.PrivateKeyType != UnknownPrivateKey {
return nil, errutil.UserError{"more than one private key given; provide only one private key in the bundle"}
}
parsedBundle.PrivateKeyFormat = ECBlock
parsedBundle.PrivateKeyType = ECPrivateKey
parsedBundle.PrivateKeyBytes = pemBlock.Bytes
parsedBundle.PrivateKey = signer
} else if signer, err := x509.ParsePKCS1PrivateKey(pemBlock.Bytes); err == nil {
if parsedBundle.PrivateKeyType != UnknownPrivateKey {
return nil, errutil.UserError{"more than one private key given; provide only one private key in the bundle"}
}
parsedBundle.PrivateKeyType = RSAPrivateKey
parsedBundle.PrivateKeyFormat = PKCS1Block
parsedBundle.PrivateKeyBytes = pemBlock.Bytes
parsedBundle.PrivateKey = signer
} else if signer, err := x509.ParsePKCS8PrivateKey(pemBlock.Bytes); err == nil {
parsedBundle.PrivateKeyFormat = PKCS8Block
if parsedBundle.PrivateKeyType != UnknownPrivateKey {
return nil, errutil.UserError{"More than one private key given; provide only one private key in the bundle"}
}
switch signer := signer.(type) {
case *rsa.PrivateKey:
parsedBundle.PrivateKey = signer
parsedBundle.PrivateKeyType = RSAPrivateKey
parsedBundle.PrivateKeyBytes = pemBlock.Bytes
case *ecdsa.PrivateKey:
parsedBundle.PrivateKey = signer
parsedBundle.PrivateKeyType = ECPrivateKey
parsedBundle.PrivateKeyBytes = pemBlock.Bytes
}
} else if certificates, err := x509.ParseCertificates(pemBlock.Bytes); err == nil {
certPath = append(certPath, &CertBlock{
Certificate: certificates[0],
Bytes: pemBlock.Bytes,
})
}
}
for i, certBlock := range certPath {
if i == 0 {
parsedBundle.Certificate = certBlock.Certificate
parsedBundle.CertificateBytes = certBlock.Bytes
} else {
parsedBundle.CAChain = append(parsedBundle.CAChain, certBlock)
}
}
if err := parsedBundle.Verify(); err != nil {
return nil, errutil.UserError{Err: fmt.Sprintf("verification of parsed bundle failed: %s", err)}
}
return parsedBundle, nil
}
// GeneratePrivateKey generates a private key with the specified type and key bits
func GeneratePrivateKey(keyType string, keyBits int, container ParsedPrivateKeyContainer) error {
var err error
var privateKeyType PrivateKeyType
var privateKeyBytes []byte
var privateKey crypto.Signer
switch keyType {
case "rsa":
privateKeyType = RSAPrivateKey
privateKey, err = rsa.GenerateKey(rand.Reader, keyBits)
if err != nil {
return errutil.InternalError{Err: fmt.Sprintf("error generating RSA private key: %v", err)}
}
privateKeyBytes = x509.MarshalPKCS1PrivateKey(privateKey.(*rsa.PrivateKey))
case "ec":
privateKeyType = ECPrivateKey
var curve elliptic.Curve
switch keyBits {
case 224:
curve = elliptic.P224()
case 256:
curve = elliptic.P256()
case 384:
curve = elliptic.P384()
case 521:
curve = elliptic.P521()
default:
return errutil.UserError{Err: fmt.Sprintf("unsupported bit length for EC key: %d", keyBits)}
}
privateKey, err = ecdsa.GenerateKey(curve, rand.Reader)
if err != nil {
return errutil.InternalError{Err: fmt.Sprintf("error generating EC private key: %v", err)}
}
privateKeyBytes, err = x509.MarshalECPrivateKey(privateKey.(*ecdsa.PrivateKey))
if err != nil {
return errutil.InternalError{Err: fmt.Sprintf("error marshalling EC private key: %v", err)}
}
default:
return errutil.UserError{Err: fmt.Sprintf("unknown key type: %s", keyType)}
}
container.SetParsedPrivateKey(privateKey, privateKeyType, privateKeyBytes)
return nil
}
// GenerateSerialNumber generates a serial number suitable for a certificate
func GenerateSerialNumber() (*big.Int, error) {
serial, err := rand.Int(rand.Reader, (&big.Int{}).Exp(big.NewInt(2), big.NewInt(159), nil))
if err != nil {
return nil, errutil.InternalError{Err: fmt.Sprintf("error generating serial number: %v", err)}
}
return serial, nil
}
// ComparePublicKeys compares two public keys and returns true if they match
func ComparePublicKeys(key1Iface, key2Iface crypto.PublicKey) (bool, error) {
switch key1Iface.(type) {
case *rsa.PublicKey:
key1 := key1Iface.(*rsa.PublicKey)
key2, ok := key2Iface.(*rsa.PublicKey)
if !ok {
return false, fmt.Errorf("key types do not match: %T and %T", key1Iface, key2Iface)
}
if key1.N.Cmp(key2.N) != 0 ||
key1.E != key2.E {
return false, nil
}
return true, nil
case *ecdsa.PublicKey:
key1 := key1Iface.(*ecdsa.PublicKey)
key2, ok := key2Iface.(*ecdsa.PublicKey)
if !ok {
return false, fmt.Errorf("key types do not match: %T and %T", key1Iface, key2Iface)
}
if key1.X.Cmp(key2.X) != 0 ||
key1.Y.Cmp(key2.Y) != 0 {
return false, nil
}
key1Params := key1.Params()
key2Params := key2.Params()
if key1Params.P.Cmp(key2Params.P) != 0 ||
key1Params.N.Cmp(key2Params.N) != 0 ||
key1Params.B.Cmp(key2Params.B) != 0 ||
key1Params.Gx.Cmp(key2Params.Gx) != 0 ||
key1Params.Gy.Cmp(key2Params.Gy) != 0 ||
key1Params.BitSize != key2Params.BitSize {
return false, nil
}
return true, nil
default:
return false, fmt.Errorf("cannot compare key with type %T", key1Iface)
}
}