-
Notifications
You must be signed in to change notification settings - Fork 48
/
ner_eval.py
460 lines (316 loc) · 15.8 KB
/
ner_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import logging
from collections import namedtuple
from copy import deepcopy
logging.basicConfig(
format="%(asctime)s %(name)s %(levelname)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level="DEBUG",
)
Entity = namedtuple("Entity", "e_type start_offset end_offset")
class Evaluator():
def __init__(self, true, pred, tags):
"""
"""
if len(true) != len(pred):
raise ValueError("Number of predicted documents does not equal true")
self.true = true
self.pred = pred
self.tags = tags
# Setup dict into which metrics will be stored.
self.metrics_results = {
'correct': 0,
'incorrect': 0,
'partial': 0,
'missed': 0,
'spurious': 0,
'possible': 0,
'actual': 0,
'precision': 0,
'recall': 0,
}
# Copy results dict to cover the four schemes.
self.results = {
'strict': deepcopy(self.metrics_results),
'ent_type': deepcopy(self.metrics_results),
'partial':deepcopy(self.metrics_results),
'exact':deepcopy(self.metrics_results),
}
# Create an accumulator to store results
self.evaluation_agg_entities_type = {e: deepcopy(self.results) for e in tags}
def evaluate(self):
logging.info(
"Imported %s predictions for %s true examples",
len(self.pred), len(self.true)
)
for true_ents, pred_ents in zip(self.true, self.pred):
# Check that the length of the true and predicted examples are the
# same. This must be checked here, because another error may not
# be thrown if the lengths do not match.
if len(true_ents) != len(pred_ents):
raise ValueError("Prediction length does not match true example length")
# Compute results for one message
tmp_results, tmp_agg_results = compute_metrics(
collect_named_entities(true_ents),
collect_named_entities(pred_ents),
self.tags
)
# Cycle through each result and accumulate
# TODO: Combine these loops below:
for eval_schema in self.results:
for metric in self.results[eval_schema]:
self.results[eval_schema][metric] += tmp_results[eval_schema][metric]
# Calculate global precision and recall
self.results = compute_precision_recall_wrapper(self.results)
# Aggregate results by entity type
for e_type in self.tags:
for eval_schema in tmp_agg_results[e_type]:
for metric in tmp_agg_results[e_type][eval_schema]:
self.evaluation_agg_entities_type[e_type][eval_schema][metric] += tmp_agg_results[e_type][eval_schema][metric]
# Calculate precision recall at the individual entity level
self.evaluation_agg_entities_type[e_type] = compute_precision_recall_wrapper(self.evaluation_agg_entities_type[e_type])
return self.results, self.evaluation_agg_entities_type
def collect_named_entities(tokens):
"""
Creates a list of Entity named-tuples, storing the entity type and the start and end
offsets of the entity.
:param tokens: a list of tags
:return: a list of Entity named-tuples
"""
named_entities = []
start_offset = None
end_offset = None
ent_type = None
for offset, token_tag in enumerate(tokens):
if token_tag == 'O':
if ent_type is not None and start_offset is not None:
end_offset = offset - 1
named_entities.append(Entity(ent_type, start_offset, end_offset))
start_offset = None
end_offset = None
ent_type = None
elif ent_type is None:
ent_type = token_tag[2:]
start_offset = offset
elif ent_type != token_tag[2:] or (ent_type == token_tag[2:] and token_tag[:1] == 'B'):
end_offset = offset - 1
named_entities.append(Entity(ent_type, start_offset, end_offset))
# start of a new entity
ent_type = token_tag[2:]
start_offset = offset
end_offset = None
# catches an entity that goes up until the last token
if ent_type is not None and start_offset is not None and end_offset is None:
named_entities.append(Entity(ent_type, start_offset, len(tokens)-1))
return named_entities
def compute_metrics(true_named_entities, pred_named_entities, tags):
eval_metrics = {'correct': 0, 'incorrect': 0, 'partial': 0, 'missed': 0, 'spurious': 0, 'precision': 0, 'recall': 0}
# overall results
evaluation = {
'strict': deepcopy(eval_metrics),
'ent_type': deepcopy(eval_metrics),
'partial': deepcopy(eval_metrics),
'exact': deepcopy(eval_metrics)
}
# results by entity type
evaluation_agg_entities_type = {e: deepcopy(evaluation) for e in tags}
# keep track of entities that overlapped
true_which_overlapped_with_pred = []
# Subset into only the tags that we are interested in.
# NOTE: we remove the tags we don't want from both the predicted and the
# true entities. This covers the two cases where mismatches can occur:
#
# 1) Where the model predicts a tag that is not present in the true data
# 2) Where there is a tag in the true data that the model is not capable of
# predicting.
true_named_entities = [ent for ent in true_named_entities if ent.e_type in tags]
pred_named_entities = [ent for ent in pred_named_entities if ent.e_type in tags]
# go through each predicted named-entity
for pred in pred_named_entities:
found_overlap = False
# Check each of the potential scenarios in turn. See
# http://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/
# for scenario explanation.
# Scenario I: Exact match between true and pred
if pred in true_named_entities:
true_which_overlapped_with_pred.append(pred)
evaluation['strict']['correct'] += 1
evaluation['ent_type']['correct'] += 1
evaluation['exact']['correct'] += 1
evaluation['partial']['correct'] += 1
# for the agg. by e_type results
evaluation_agg_entities_type[pred.e_type]['strict']['correct'] += 1
evaluation_agg_entities_type[pred.e_type]['ent_type']['correct'] += 1
evaluation_agg_entities_type[pred.e_type]['exact']['correct'] += 1
evaluation_agg_entities_type[pred.e_type]['partial']['correct'] += 1
else:
# check for overlaps with any of the true entities
for true in true_named_entities:
pred_range = range(pred.start_offset, pred.end_offset)
true_range = range(true.start_offset, true.end_offset)
# Scenario IV: Offsets match, but entity type is wrong
if true.start_offset == pred.start_offset and pred.end_offset == true.end_offset \
and true.e_type != pred.e_type:
# overall results
evaluation['strict']['incorrect'] += 1
evaluation['ent_type']['incorrect'] += 1
evaluation['partial']['correct'] += 1
evaluation['exact']['correct'] += 1
# aggregated by entity type results
evaluation_agg_entities_type[true.e_type]['strict']['incorrect'] += 1
evaluation_agg_entities_type[true.e_type]['ent_type']['incorrect'] += 1
evaluation_agg_entities_type[true.e_type]['partial']['correct'] += 1
evaluation_agg_entities_type[true.e_type]['exact']['correct'] += 1
true_which_overlapped_with_pred.append(true)
found_overlap = True
break
# check for an overlap i.e. not exact boundary match, with true entities
elif find_overlap(true_range, pred_range):
true_which_overlapped_with_pred.append(true)
# Scenario V: There is an overlap (but offsets do not match
# exactly), and the entity type is the same.
# 2.1 overlaps with the same entity type
if pred.e_type == true.e_type:
# overall results
evaluation['strict']['incorrect'] += 1
evaluation['ent_type']['correct'] += 1
evaluation['partial']['partial'] += 1
evaluation['exact']['incorrect'] += 1
# aggregated by entity type results
evaluation_agg_entities_type[true.e_type]['strict']['incorrect'] += 1
evaluation_agg_entities_type[true.e_type]['ent_type']['correct'] += 1
evaluation_agg_entities_type[true.e_type]['partial']['partial'] += 1
evaluation_agg_entities_type[true.e_type]['exact']['incorrect'] += 1
found_overlap = True
break
# Scenario VI: Entities overlap, but the entity type is
# different.
else:
# overall results
evaluation['strict']['incorrect'] += 1
evaluation['ent_type']['incorrect'] += 1
evaluation['partial']['partial'] += 1
evaluation['exact']['incorrect'] += 1
# aggregated by entity type results
# Results against the true entity
evaluation_agg_entities_type[true.e_type]['strict']['incorrect'] += 1
evaluation_agg_entities_type[true.e_type]['partial']['partial'] += 1
evaluation_agg_entities_type[true.e_type]['ent_type']['incorrect'] += 1
evaluation_agg_entities_type[true.e_type]['exact']['incorrect'] += 1
# Results against the predicted entity
# evaluation_agg_entities_type[pred.e_type]['strict']['spurious'] += 1
found_overlap = True
break
# Scenario II: Entities are spurious (i.e., over-generated).
if not found_overlap:
# Overall results
evaluation['strict']['spurious'] += 1
evaluation['ent_type']['spurious'] += 1
evaluation['partial']['spurious'] += 1
evaluation['exact']['spurious'] += 1
# Aggregated by entity type results
# NOTE: when pred.e_type is not found in tags
# or when it simply does not appear in the test set, then it is
# spurious, but it is not clear where to assign it at the tag
# level. In this case, it is applied to all target_tags
# found in this example. This will mean that the sum of the
# evaluation_agg_entities will not equal evaluation.
for true in tags:
evaluation_agg_entities_type[true]['strict']['spurious'] += 1
evaluation_agg_entities_type[true]['ent_type']['spurious'] += 1
evaluation_agg_entities_type[true]['partial']['spurious'] += 1
evaluation_agg_entities_type[true]['exact']['spurious'] += 1
# Scenario III: Entity was missed entirely.
for true in true_named_entities:
if true in true_which_overlapped_with_pred:
continue
else:
# overall results
evaluation['strict']['missed'] += 1
evaluation['ent_type']['missed'] += 1
evaluation['partial']['missed'] += 1
evaluation['exact']['missed'] += 1
# for the agg. by e_type
evaluation_agg_entities_type[true.e_type]['strict']['missed'] += 1
evaluation_agg_entities_type[true.e_type]['ent_type']['missed'] += 1
evaluation_agg_entities_type[true.e_type]['partial']['missed'] += 1
evaluation_agg_entities_type[true.e_type]['exact']['missed'] += 1
# Compute 'possible', 'actual' according to SemEval-2013 Task 9.1 on the
# overall results, and use these to calculate precision and recall.
for eval_type in evaluation:
evaluation[eval_type] = compute_actual_possible(evaluation[eval_type])
# Compute 'possible', 'actual', and precision and recall on entity level
# results. Start by cycling through the accumulated results.
for entity_type, entity_level in evaluation_agg_entities_type.items():
# Cycle through the evaluation types for each dict containing entity
# level results.
for eval_type in entity_level:
evaluation_agg_entities_type[entity_type][eval_type] = compute_actual_possible(
entity_level[eval_type]
)
return evaluation, evaluation_agg_entities_type
def find_overlap(true_range, pred_range):
"""Find the overlap between two ranges
Find the overlap between two ranges. Return the overlapping values if
present, else return an empty set().
Examples:
>>> find_overlap((1, 2), (2, 3))
2
>>> find_overlap((1, 2), (3, 4))
set()
"""
true_set = set(true_range)
pred_set = set(pred_range)
overlaps = true_set.intersection(pred_set)
return overlaps
def compute_actual_possible(results):
"""
Takes a result dict that has been output by compute metrics.
Returns the results dict with actual, possible populated.
When the results dicts is from partial or ent_type metrics, then
partial_or_type=True to ensure the right calculation is used for
calculating precision and recall.
"""
correct = results['correct']
incorrect = results['incorrect']
partial = results['partial']
missed = results['missed']
spurious = results['spurious']
# Possible: number annotations in the gold-standard which contribute to the
# final score
possible = correct + incorrect + partial + missed
# Actual: number of annotations produced by the NER system
actual = correct + incorrect + partial + spurious
results["actual"] = actual
results["possible"] = possible
return results
def compute_precision_recall(results, partial_or_type=False):
"""
Takes a result dict that has been output by compute metrics.
Returns the results dict with precison and recall populated.
When the results dicts is from partial or ent_type metrics, then
partial_or_type=True to ensure the right calculation is used for
calculating precision and recall.
"""
actual = results["actual"]
possible = results["possible"]
partial = results['partial']
correct = results['correct']
if partial_or_type:
precision = (correct + 0.5 * partial) / actual if actual > 0 else 0
recall = (correct + 0.5 * partial) / possible if possible > 0 else 0
else:
precision = correct / actual if actual > 0 else 0
recall = correct / possible if possible > 0 else 0
results["precision"] = precision
results["recall"] = recall
return results
def compute_precision_recall_wrapper(results):
"""
Wraps the compute_precision_recall function and runs on a dict of results
"""
results_a = {key: compute_precision_recall(value, True) for key, value in results.items() if
key in ['partial', 'ent_type']}
results_b = {key: compute_precision_recall(value) for key, value in results.items() if
key in ['strict', 'exact']}
results = {**results_a, **results_b}
return results