-
Notifications
You must be signed in to change notification settings - Fork 292
/
maxsize_test.go
289 lines (263 loc) · 9.37 KB
/
maxsize_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// Copyright (c) 2024 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockcf2
import (
"encoding/binary"
"math/bits"
"math/rand"
"sort"
"testing"
"time"
"github.com/dchest/siphash"
"github.com/decred/dcrd/chaincfg/v3"
"github.com/decred/dcrd/gcs/v4"
"github.com/decred/dcrd/wire"
)
// TestMaxSize verifies the max size of blockcf2 filters for various
// parameters.
//
// This test is meant to nail down the values generated by various
// package-level constants to known good hardcoded values such that if any of
// the values change, this test breaks and any code that relies on assumptions
// about the max filter size having a particular value are reviewed.
func TestMaxSize(t *testing.T) {
// entrySizeForSize returns the size of scripts that ensures that every
// script added to a filter maximizes the passed maximum size.
//
// When adding scripts to build the filter, every input script should
// be unique in order to maximize the chances of unique values after
// the siphash and modulo reduction stages. When the total size
// available to build input scripts is less than or equal to 2^8, then
// a single byte is sufficient (because each byte will have a unique
// value), and so on when the max size is 2^16, 2^24 and 2^32.
//
// In practice, for the current network constants, the script size that
// will maximize all tests will be 3.
entrySizeForSize := func(size uint32) uint32 {
switch {
case size < 1<<8:
return 1
case size < 1<<16:
return 2
case size < 1<<24:
return 3
default:
return 4
}
}
// mainnetMaxBlockSize is the max size of mainnet blocks according to
// the most recent consensus rules.
mainnetBlockSizes := chaincfg.MainNetParams().MaximumBlockSizes
mainnetMaxBlockSize := uint32(mainnetBlockSizes[len(mainnetBlockSizes)-1])
const (
// minTxSize is the minimum transaction size with one input
// (and no outputs).
minTxSize = uint32(4 + 51 + 18)
// txOutSize is the size of an output, plus one byte for the
// pkscript length encoded as a varint.
txOutSize = uint32(10 + 1)
// p2shSize is the size of a P2SH script (the smallest standard
// script that may be added without limits to a transaction).
p2shSize = uint32(23)
)
tests := []struct {
name string
n uint32
want uint64
}{{
// This test asserts the size of a filter when the source
// data for the filter fills an entire P2P message.
name: "filter from data that fills an entire P2P msg",
n: wire.MaxMessagePayload / entrySizeForSize(wire.MaxMessagePayload),
want: 22541387,
}, {
// This test asserts the size of a filter when the source data
// for the filter fills as many bytes as the maximum block
// payload size for a P2P message.
name: "filter from data that fills the max block size",
n: wire.MaxBlockPayload / entrySizeForSize(wire.MaxBlockPayload),
want: 1174034,
}, {
// This test asserts the size of a filter when the source data
// for the filter fills as many bytes as the maximum consensus
// enforced block size for mainnet.
name: "filter from data that fills the max mainnet block size",
n: mainnetMaxBlockSize / entrySizeForSize(mainnetMaxBlockSize),
want: 352214,
}, {
// This test asserts the size of a filter when the source data
// for the filter is a single tx that has as many OP_RETURN
// outputs as necessary to fill a block.
name: "filter from tx filled with OP_RETURN outputs",
n: wire.MaxBlockPayload / (txOutSize + entrySizeForSize(wire.MaxBlockPayload)),
want: 251581,
}, {
// This test asserts the size of a filter when the source data
// is a set of transactions that have 4 OP_RETURN outputs, as
// enforced by the standardness policy checks of the mempool.
name: "filter from standard OP_RETURN tx",
n: wire.MaxBlockPayload / (minTxSize + (txOutSize+entrySizeForSize(wire.MaxBlockPayload))*4),
want: 27305,
}, {
// This test asserts the size of a filter when the source data
// is a single transaction with as many P2SH outputs as
// necessary to fill the largest block of any network.
name: "filter from P2SH outputs tx",
n: wire.MaxBlockPayload / (txOutSize + p2shSize),
want: 103593,
}, {
// This test asserts the size of a filter when the source data
// is a single transaction with as many P2SH outputs as
// necessary to fill the largest block on mainnet.
name: "filter from P2SH outputs tx on mainnet",
n: mainnetMaxBlockSize / (txOutSize + p2shSize),
want: 31080,
}}
for i := range tests {
tc := tests[i]
t.Run(tc.name, func(t *testing.T) {
got := gcs.MaxFilterV2Size(B, M, tc.n)
if tc.want != got {
t.Logf("N: %d", tc.n)
t.Fatalf("Unexpected max filter size: got %d, want %d",
got, tc.want)
}
})
}
}
func fastReduce(x, N uint64) uint64 {
hi, _ := bits.Mul64(x, N)
return hi
}
// TestWorstMaxSize generates the largest possible cfilter for a given random
// key.
func TestWorstMaxSize(t *testing.T) {
if testing.Short() {
t.Skip("Skipping due to -test.short")
}
const scriptSize = 3
rnd := rand.New(rand.NewSource(time.Now().UnixNano()))
nbScripts := wire.MaxBlockPayload / scriptSize
endian := binary.BigEndian
aux := make([]byte, 4)
var key [gcs.KeySize]byte
rnd.Read(key[:])
k0 := binary.LittleEndian.Uint64(key[0:8])
k1 := binary.LittleEndian.Uint64(key[8:16])
modulusNM := uint64(nbScripts * M)
// Generate every 3-byte script (2^24) and create a map of the reduced
// value to the script values that produce that reduced value (as a
// uint32).
maxNb := 1 << (8 * scriptSize)
seenSip := make(map[uint64]struct{}, maxNb)
seenReduced := make(map[uint64][]uint32, maxNb)
keys := make([]uint64, 0, maxNb)
for c := uint32(0); c < uint32(maxNb); c++ {
endian.PutUint32(aux, c)
v := siphash.Hash(k0, k1, aux[1:])
if _, ok := seenSip[v]; ok {
continue
}
seenSip[v] = struct{}{}
vv := fastReduce(v, modulusNM)
seenReduced[vv] = append(seenReduced[vv], c)
keys = append(keys, vv)
}
// Sort the reduced values in ascending order.
sort.Slice(keys, func(i, j int) bool { return keys[i] < keys[j] })
for i := 0; i < 10; i++ {
t.Logf("smallest seen %d: %d (%v)", i, keys[i], seenReduced[keys[i]])
}
for i := len(keys) - 10; i < len(keys); i++ {
t.Logf("largest seen %d: %d (%v)", i, keys[i], seenReduced[keys[i]])
}
// Create the scripts. The first N-1 scripts will generate the smallest
// possible reduced values.
data := make([][]byte, nbScripts)
for i := 0; i < nbScripts-1; i++ {
values := seenReduced[keys[i]]
if len(values) > 1 {
// Report on different input entries that generate
// different siphash values that nevertheless reduce to
// the same final value.
sips := make([]uint64, len(values))
mods := make([]uint64, len(values))
for j := range values {
endian.PutUint32(aux, values[j])
sips[j] = siphash.Hash(k0, k1, aux[1:])
mods[j] = fastReduce(sips[j], modulusNM)
}
t.Logf("Collision on modulo reduction for script %d: "+
"values %v, siphashes %v, modulos %v", i, values,
sips, mods)
}
data[i] = make([]byte, scriptSize)
endian.PutUint32(aux, values[0])
copy(data[i], aux[1:])
seenReduced[keys[i]] = values[1:]
}
// The last script will generate the largest possible reduced value. The
// difference between the last and second-to-last scripts is the largest
// difference possible (when using this specific random key).
i := nbScripts - 1
data[i] = make([]byte, scriptSize)
endian.PutUint32(aux, seenReduced[keys[len(keys)-1]][0])
copy(data[i], aux[1:])
// Create filter and report results.
filter, err := gcs.NewFilterV2(B, M, key, data)
if err != nil {
t.Fatal(err)
}
sz := uint64(len(filter.Bytes()))
t.Logf("Key: %x", key)
t.Logf("Number of values: %d", len(seenReduced))
t.Logf("Scripts: %d", len(data))
// The maximum possible quotient happens when the first nbScripts-1
// scripts generate values from 0..nbScripts-2 and the last script
// generates the value modulusNM -1.
N := uint64(nbScripts)
maxQuotient := ((modulusNM - 1) - (N - 1)) >> 19
t.Logf("Max Quotient: %d", maxQuotient)
// The max possible size can be calculated by assuming every script
// will generate a value (i.e. no removed duplicates) and the last
// script will generate the max possible quotient.
maxPossible := gcs.MaxFilterV2Size(B, M, uint32(nbScripts))
t.Logf("Max Possible size: %d, actual size: %d", maxPossible, sz)
}
// TestRandomFilterSize generates filters with random data.
func TestRandomFilterSize(t *testing.T) {
// Use a unique random seed each test instance and log it if the tests
// fail.
seed := time.Now().UnixNano()
rng := rand.New(rand.NewSource(seed))
defer func(t *testing.T, seed int64) {
if t.Failed() {
t.Logf("random seed: %d", seed)
}
}(t, seed)
scriptSize := 3
nbScripts := wire.MaxBlockPayload / scriptSize
data := make([][]byte, nbScripts)
for i := range data {
data[i] = make([]byte, scriptSize)
}
var key [gcs.KeySize]byte
// Generate a random filter and key.
for i := range data {
rng.Read(data[i])
}
rng.Read(key[:])
// Check if it's larger than possible.
filter, err := gcs.NewFilterV2(B, M, key, data)
if err != nil {
t.Fatal(err)
}
sz := uint64(len(filter.Bytes()))
maxPossible := gcs.MaxFilterV2Size(B, M, uint32(nbScripts))
t.Logf("Max Possible size: %d, actual size: %d", maxPossible, sz)
if sz > maxPossible {
t.Fatalf("Found a random filter with max size %d > max possible size %d",
sz, maxPossible)
}
}