-
Notifications
You must be signed in to change notification settings - Fork 191
/
wrappers.py
60 lines (52 loc) · 2.16 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transformation wrappers."""
from collections.abc import Callable
import functools
import chex
import jax.numpy as jnp
from optax._src import base
from optax.transforms import _accumulation
from optax.transforms import _conditionality
from optax.transforms import _layouts
from optax.transforms import _masking
apply_if_finite = _conditionality.apply_if_finite
ApplyIfFiniteState = _conditionality.ApplyIfFiniteState
ConditionFn = _conditionality.ConditionFn
conditionally_mask = _conditionality.conditionally_mask
conditionally_transform = _conditionality.conditionally_transform
ConditionallyMaskState = _conditionality.ConditionallyMaskState
ConditionallyTransformState = _conditionality.ConditionallyTransformState
flatten = _layouts.flatten
masked = _masking.masked
MaskedNode = _masking.MaskedNode
MaskedState = _masking.MaskedState
MultiSteps = _accumulation.MultiSteps
MultiStepsState = _accumulation.MultiStepsState
ShouldSkipUpdateFunction = _accumulation.ShouldSkipUpdateFunction
skip_not_finite = _accumulation.skip_not_finite
skip_large_updates = _accumulation.skip_large_updates
@functools.partial(
chex.warn_deprecated_function,
replacement='optax.transforms.maybe_transform',
)
def maybe_update(
inner: base.GradientTransformation,
should_update_fn: Callable[[jnp.ndarray], jnp.ndarray],
) -> base.GradientTransformationExtraArgs:
return conditionally_transform(
inner=inner, should_transform_fn=should_update_fn
)
MaybeUpdateState = ConditionallyTransformState