Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

deepvac_clothes_accept600 SOTA #21

Open
gemfield opened this issue Jun 1, 2021 · 6 comments
Open

deepvac_clothes_accept600 SOTA #21

gemfield opened this issue Jun 1, 2021 · 6 comments

Comments

@gemfield
Copy link
Contributor

gemfield commented Jun 1, 2021

IoU 金榜

  • test5: 58.6% (62.6%)
  • test6: 58.4% (62.7%)
  • test4: 57.8% (62.4%)
  • test3: 57.4% (61.5%)
  • test2: 57.2% (61.5%)
  • test1: 53.6% (57.1%)
@buptlihang
Copy link
Contributor

buptlihang commented Jun 2, 2021

test1

model

model_esp_epoch_248_miou_0.7251.pth

IOU

  • images: 0.536
  • images_no_dress: 0.571
  • val data: 0.7251

特别超参

  • 训练集:std2.1
  • 网络:original ESPNetV2
  • config.input_w = 384
  • config.input_h = 384
  • config.core.optimizer = torch.optim.SGD(config.core.net.parameters(), 5e-3, momentum=0.9)
    config.core.scheduler = optim.lr_scheduler.MultiStepLR(config.core.optimizer, milestones=[20,40,55,70,80,90,100,110,120,130,140,150,160], gamma=0.27030)

基本超参

  • config.core.cls_num = 4
  • config.core.batch_size = 16
  • config.core.mean = config.data['mean']
  • config.core.std = config.data['std']
  • config.core.model_path = "/opt/public/pretrain/ESPNetv2/imagenet/espnetv2_s_2.0.pth"
  • config.core.criterion = torch.nn.CrossEntropyLoss(weight)
  • BorderTargetAugFactory('SpeckleAug@0.1 => GaussianAug@0.1 => HorlineAug@0.1 => VerlineAug@0.1 => LRmotionAug@0.1 => UDmotionAug@0.1
    => NoisyAug@0.1 => DarkAug@0.1 => ColorJitterAug@0.25 => BrightnessJitterAug@0.25 => ContrastJitterAug@0.25 =>
    ImageWithMasksRandomRotateAug@0.6 => ImageWithMasksCenterCropAug => ImageWithMasksScaleAug => ImageWithMasksHFlipAug@0.5 =>
    ImageWithMasksNormalizeAug => BorderTargetAug => ImageWithTwoMasksToTensorAug', deepvac_config)

@buptlihang
Copy link
Contributor

buptlihang commented Jun 2, 2021

test2

model

gemfield_epoch_186.pth

IOU

  • images: 0.572
  • images_no_dress: 0.615
  • val data: 0.73?

特别超参

  • 训练集:std2.1
  • 网络:original ESPNetV2
  • config.input_w = 384
  • config.input_h = 384
  • config.core.optimizer = torch.optim.Adam(config.core.net.parameters(), 5e-4, (0.9, 0.999))
    lambda_lr = lambda epoch: round ((1 - epoch/config.core.epoch_num) ** 0.9, 8)
    config.core.scheduler = optim.lr_scheduler.LambdaLR(config.core.optimizer, lr_lambda=lambda_lr)

基本超参

  • config.core.cls_num = 4
  • config.core.batch_size = 16
  • config.core.mean = config.data['mean']
  • config.core.std = config.data['std']
  • config.core.model_path = "/opt/public/pretrain/ESPNetv2/imagenet/espnetv2_s_2.0.pth"
  • config.core.criterion = torch.nn.CrossEntropyLoss(weight)
  • BorderTargetAugFactory('SpeckleAug@0.1 => GaussianAug@0.1 => HorlineAug@0.1 => VerlineAug@0.1 => LRmotionAug@0.1 => UDmotionAug@0.1
    => NoisyAug@0.1 => DarkAug@0.1 => ColorJitterAug@0.25 => BrightnessJitterAug@0.25 => ContrastJitterAug@0.25 =>
    ImageWithMasksRandomRotateAug@0.6 => ImageWithMasksCenterCropAug => ImageWithMasksScaleAug => ImageWithMasksHFlipAug@0.5 =>
    ImageWithMasksNormalizeAug => BorderTargetAug => ImageWithTwoMasksToTensorAug', deepvac_config)

@buptlihang
Copy link
Contributor

buptlihang commented Jun 2, 2021

test3

model

model_fusion_0.7428.pth

IOU

  • images:0.574
  • images_no_dress: 0.615
  • val data: 0.7428

特别超参

  • 训练集:std2.1
  • 网络:semantic+detail+fusion
  • config.input_w = 384
  • config.input_h = 384
  • config.core.optimizer = torch.optim.SGD(config.core.net.parameters(), 5e-3, momentum=0.9)
  • config.core.scheduler = optim.lr_scheduler.MultiStepLR(config.core.optimizer, milestones=[20,40,55,70,80,90,100,110,120,130,140,150,160], gamma=0.27030)

基本超参

  • config.core.cls_num = 4
  • config.core.batch_size = 16
  • config.core.mean = config.data['mean']
  • config.core.std = config.data['std']
  • config.core.model_path = "/opt/public/pretrain/ESPNetv2/imagenet/espnetv2_s_2.0.pth"
  • config.core.criterion = torch.nn.CrossEntropyLoss(weight)
  • BorderTargetAugFactory('SpeckleAug@0.1 => GaussianAug@0.1 => HorlineAug@0.1 => VerlineAug@0.1 => LRmotionAug@0.1 => UDmotionAug@0.1
    => NoisyAug@0.1 => DarkAug@0.1 => ColorJitterAug@0.25 => BrightnessJitterAug@0.25 => ContrastJitterAug@0.25 =>
    ImageWithMasksRandomRotateAug@0.6 => ImageWithMasksCenterCropAug => ImageWithMasksScaleAug => ImageWithMasksHFlipAug@0.5 =>
    ImageWithMasksNormalizeAug => BorderTargetAug => ImageWithTwoMasksToTensorAug', deepvac_config)

@buptlihang
Copy link
Contributor

buptlihang commented Jun 2, 2021

test4

model

model_fusion_0.7473.pth

IOU

  • images: 0.578
  • images_no_dress: 0.624
  • val data: 0.7473

特别超参

  • 训练集:std2.1
  • 网络:semantic+detail+fusion
  • config.input_w = 384
  • config.input_h = 384
  • config.core.optimizer = torch.optim.Adam(config.core.net.parameters(), 5e-4, (0.9, 0.999))
    lambda_lr = lambda epoch: round ((1 - epoch/config.core.epoch_num) ** 0.9, 8)
    config.core.scheduler = optim.lr_scheduler.LambdaLR(config.core.optimizer, lr_lambda=lambda_lr)

基本超参

  • config.core.cls_num = 4
  • config.core.batch_size = 16
  • config.core.mean = config.data['mean']
  • config.core.std = config.data['std']
  • config.core.model_path = "/opt/public/pretrain/ESPNetv2/imagenet/espnetv2_s_2.0.pth"
  • config.core.criterion = torch.nn.CrossEntropyLoss(weight)
  • BorderTargetAugFactory('SpeckleAug@0.1 => GaussianAug@0.1 => HorlineAug@0.1 => VerlineAug@0.1 => LRmotionAug@0.1 => UDmotionAug@0.1
    => NoisyAug@0.1 => DarkAug@0.1 => ColorJitterAug@0.25 => BrightnessJitterAug@0.25 => ContrastJitterAug@0.25 =>
    ImageWithMasksRandomRotateAug@0.6 => ImageWithMasksCenterCropAug => ImageWithMasksScaleAug => ImageWithMasksHFlipAug@0.5 =>
    ImageWithMasksNormalizeAug => BorderTargetAug => ImageWithTwoMasksToTensorAug', deepvac_config)

@buptlihang
Copy link
Contributor

test5

model

model_synthesis_epoch_155_0.7394.pth

IOU

  • images: 0.586
  • images_no_dress: 0.626
  • val data: 0.7394

特别超参

  • 训练集:std2.1+synthesis(2800+5700)
  • 网络:original ESPNetV2
  • config.input_w = 384
  • config.input_h = 384
  • config.core.optimizer = torch.optim.SGD(config.core.net.parameters(), 5e-3, momentum=0.9)
    config.core.scheduler = optim.lr_scheduler.MultiStepLR(config.core.optimizer, milestones=[20,40,55,70,80,90,100,110,120,130,140,150,160], gamma=0.27030)

基本超参

  • config.core.cls_num = 4
  • config.core.batch_size = 16
  • config.core.mean = config.data['mean']
  • config.core.std = config.data['std']
  • config.core.model_path = "/opt/public/pretrain/ESPNetv2/imagenet/espnetv2_s_2.0.pth"
  • config.core.criterion = torch.nn.CrossEntropyLoss(weight)
  • BorderTargetAugFactory('SpeckleAug@0.1 => GaussianAug@0.1 => HorlineAug@0.1 => VerlineAug@0.1 => LRmotionAug@0.1 => UDmotionAug@0.1
    => NoisyAug@0.1 => DarkAug@0.1 => ColorJitterAug@0.25 => BrightnessJitterAug@0.25 => ContrastJitterAug@0.25 =>
    ImageWithMasksRandomRotateAug@0.6 => ImageWithMasksCenterCropAug => ImageWithMasksScaleAug => ImageWithMasksHFlipAug@0.5 =>
    ImageWithMasksNormalizeAug => BorderTargetAug => ImageWithTwoMasksToTensorAug', deepvac_config)

@buptlihang
Copy link
Contributor

buptlihang commented Jun 2, 2021

test6

model

model_synthesis_bg_0.7405.pth

IOU

  • images: 0.584
  • images_no_dress: 0.627
  • val data: 0.7405

特别超参

  • 训练集:std2.1+Synthesis+bg(2800+5700+2000)
  • 网络:original ESPNetV2
  • config.input_w = 384
  • config.input_h = 384
  • config.core.optimizer = torch.optim.SGD(config.core.net.parameters(), 5e-3, momentum=0.9)
    config.core.scheduler = optim.lr_scheduler.MultiStepLR(config.core.optimizer, milestones=[20,40,55,70,80,90,100,110,120,130,140,150,160], gamma=0.27030)

基本超参

  • config.core.cls_num = 4
  • config.core.batch_size = 16
  • config.core.mean = config.data['mean']
  • config.core.std = config.data['std']
  • config.core.model_path = "/opt/public/pretrain/ESPNetv2/imagenet/espnetv2_s_2.0.pth"
  • config.core.criterion = torch.nn.CrossEntropyLoss(weight)
  • BorderTargetAugFactory('SpeckleAug@0.1 => GaussianAug@0.1 => HorlineAug@0.1 => VerlineAug@0.1 => LRmotionAug@0.1 => UDmotionAug@0.1
    => NoisyAug@0.1 => DarkAug@0.1 => ColorJitterAug@0.25 => BrightnessJitterAug@0.25 => ContrastJitterAug@0.25 =>
    ImageWithMasksRandomRotateAug@0.6 => ImageWithMasksCenterCropAug => ImageWithMasksScaleAug => ImageWithMasksHFlipAug@0.5 =>
    ImageWithMasksNormalizeAug => BorderTargetAug => ImageWithTwoMasksToTensorAug', deepvac_config)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants