By Xiaozhi Deng, Dong Huang and Chang-Dong Wang
This is a Pytorch implementation of the paper.
The representation encoder of the proposed HTCN is ResNet34.
Dataset | NMI | ACC | ARI |
---|---|---|---|
CIFAR-100 | 46.5 | 47.2 | 30.5 |
ImageNet-10 | 87.5 | 90.5 | 83.9 |
ImageNet-dogs | 49.4 | 49.3 | 35.2 |
Tiny-ImageNet | 35.6 | 16.0 | 7.6 |
- python>=3.7
- pytorch>=1.6.0
- torchvision>=0.8.1
- munkres>=1.1.4
- numpy>=1.19.2
- opencv-python>=4.4.0.46
- pyyaml>=5.3.1
- scikit-learn>=0.23.2
- cudatoolkit>=11.0
There is a configuration file "config/config.yaml", where one can edit both the training and test options.