-
Notifications
You must be signed in to change notification settings - Fork 2
/
Contents.m
executable file
·71 lines (71 loc) · 4.46 KB
/
Contents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
% DOGMA - Discriminative Online Good Matlab Algorithms
% Version 0.31 beta, July 28 2011
% Copyright (C) 2009-2011, Francesco Orabona.
%
% Please refer to your MATLAB documentation on how to add DOGMA to your
% MATLAB search path.
%
% Online learning algorithms.
% adagrad_rda_sql2_diag_train - Adagrad with RDA updates, squared L2 regularizer, hinge loss, and diagonal matrix.
% arow_train - Adaptive Regularization Of Weight Vectors algorithm
% arow_diag_train - Adaptive Regularization Of Weight Vectors algorithm, diagonal version
% banditron_multi_train - Banditron
% k_alma2_train - Kernel Approximate Maximal Margin Algorithm, with the 2-norm
% k_forgetron_st_train - Kernel Forgetron, 'self-tuned' variant
% k_oisvm_train - Kernel Online Independent SVM
% k_om2_multi_train - Kernel Online Multi-class Multi-kernel Learning
% k_om2_mp_multi_train - Kernel Online Multi-class Multi-kernel Learning, multiple passes
% k_omcl_multi_train - Kernel Online Multi Cue Learning multiclass
% k_pa_train - Kernel Passive-Aggressive, PA-I and PA-II variants
% k_pa_multi_train - Kernel Passive-Aggressive multiclass, PA-I and PA-II variants
% k_perceptron_train - Kernel Perceptron/Random Budget Perceptron
% k_perceptron_multi_train - Kernel Perceptron/Random Budget Perceptron multiclass
% k_projectron_train - Kernel Projectron
% k_projectron2_train - Kernel Projectron++
% k_projectron2_multi_train - Kernel Projectron++ multiclass
% k_sop_train - Kernel Second-order Perceptron
% mms_multi_train - Max Margin Set Learning algorithm
% narow_train - Narrow Adaptive Regularization Of Weight Vectors algorithm
% pa_train - Passive-Aggressive, PA-I and PA-II variants
% pa_multi_train - Passive-Aggressive multiclass, PA-I and PA-II variants
% perceptron_train - Perceptron
% pnorm_train - p-Norm
% sop_train - Second-order Perceptron
% sop_adapt_train - Second-order Perceptron, adaptive version
% vaw_train - Vovk–Azoury–Warmuth forecaster
%
% Online optimization algorithms.
% k_pegasos_train - Kernel Pegasos
% k_obscure_train - Online-Batch Strongly Convex mUlti kErnel leaRning
% k_obscure_online_train - Online-Batch Strongly Convex mUlti kErnel leaRning - 1st phase
% k_obscure_batch_train - Online-Batch Strongly Convex mUlti kErnel leaRning - 2nd phase
% k_ufomkl_multi_train - Ultra Fast Optimization for multiclass Multi Kernel Learning
% k_ufomkl_logistic_train - Ultra Fast Optimization for Multi Kernel Learning, with logistic loss
% k_ufomkl_train - Ultra Fast Optimization for Multi Kernel Learning
%
% Selective sampling algorithms.
% bbq_train - Bound on Bias Query Algorithm
% dgs_mod_train - Modified Dekel-Gentile-Sridharan selective sampler algorithm
% k_dgs_mod_train - Kernel Modified Dekel-Gentile-Sridharan selective sampler algorithm
% k_sel_perc_train - Kernel Selective Perceptron
% k_sel_ada_perc_train - Kernel Selective Perceptron with Adaptive Sampling
% k_sole_train - Kernel Second Order Label Efficient
% k_ss_train - Kernel Selective Sampler
% k_ssmd_train - Kernel Selective Sampling Mistake Driven
% sel_perc_train - Selective Perceptron
% sel_ada_perc_train - Selective Perceptron with Adaptive Sampling
% sole_train - Second Order Label Efficient
% ss_train - Selective Sampler
% ssmd_train - Selective Sampling Mistake Driven
%
% Auxiliary functions.
% model_init - General inizializiation function
% model_predict - General prediction function
% model_mc_init - Inizializiation function for Multi Cue Learning
%
% Miscellaneous.
% compute_kernel - Calculate the kernel values
% demo - Demo of many classification algorithms
% precrec - Precision and Recall calculation
% randnorm - Sample from multivariate normal
% shuffledata - Shuffle input and output data