-
Notifications
You must be signed in to change notification settings - Fork 2
/
vaw_train.m
87 lines (71 loc) · 2.66 KB
/
vaw_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
function model = vaw_train(X,Y,model)
% VAW_TRAIN Vovk–Azoury–Warmuth forecaster
%
% MODEL = VAW_TRAIN(X,Y,MODEL) trains an classifier according to the
% Vovk–Azoury–Warmuth algorithm.
%
% Additional parameters:
% - model.a is the regularization parameter.
% Default value is 1.
%
% References:
% - Vovk., V. (2001).
% Competitive on-line statistics.
% International Statistical Review, 69, (pp. 213-248).
%
% - Azoury, K. S., & Warmuth, M. (2001).
% Relative loss bounds for on-line density estimation with the
% exponential family of distributions.
% Machine Learning, 43(3), (pp. 211-246).
% This file is part of the DOGMA library for MATLAB.
% Copyright (C) 2009-2011, Francesco Orabona
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Contact the author: francesco [at] orabona.com
n = length(Y);
if isfield(model,'a')==0
model.a = 1;
end
if isfield(model,'iter')==0
model.iter = 0;
model.w = zeros(1,size(X,1));
model.w2 = zeros(1,size(X,1));
model.errTot = 0;
model.numSV = zeros(numel(Y),1);
model.aer = zeros(numel(Y),1);
model.pred = zeros(numel(Y),1);
model.KbInv = model.a*eye(size(X,1));
end
for i = 1:n
model.iter = model.iter+1;
val_f = model.w*X(:,i);
KbInv_x = model.KbInv*X(:,i);
r = X(:,i)'*KbInv_x;
% Include the current sample to predict
val_f = val_f/(r+1);
Yi = Y(i);
model.errTot = model.errTot+(val_f-Yi)^2;
model.aer(model.iter) = model.errTot/model.iter;
model.pred(model.iter) = val_f;
model.w = model.w+(Yi-val_f)/(1+r)*KbInv_x';
model.KbInv = model.KbInv-KbInv_x*KbInv_x'/(1+r);
model.S(end+1) = model.iter;
model.w2 = model.w2+model.w;
model.numSV(model.iter) = numel(model.S);
if mod(i,model.step)==0
fprintf('#%.0f SV:%5.2f(%d)\tAER:%5.2f\n', ...
ceil(i/1000),numel(model.S)/model.iter*100,numel(model.S),model.aer(model.iter)*100);
end
end