You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm having this errorError running Epic-Kitchens-55. Have you encountered this before? Thanks
Save file name anti_mod_rgb_span_6_s1_5_s2_3_s3_2_recent_2_r1_1.6_r2_1.2_r3_0.8_r4_0.4_bs_10_drop_0.3_lr_0.0001_dimLa_512_dimLi_512_epoc_15_vb_nn
Printing Arguments
Namespace(add_noun_loss=True, add_verb_loss=True, alpha=1, batch_size=10, best_model='best', debug_on=False, display_every=10, dropout_rate=0.3, ek100=False, epochs=15, img_tmpl='frame_{:010d}.jpg', json_directory='tempAgg_ant_rec//models_anticipation/', latent_dim=512, linear_dim=512, lr=0.0001, modality='rgb', mode='train', noun_class=352, noun_loss_weight=1.0, num_class=2513, num_workers=0, past_attention=True, path_to_data='/content/drive/MyDrive/Individual_Project/Models/RULSTM/rulstm-master/RULSTM/data/ek55', path_to_models='models_anticipation/ek55', recent_dim=2, recent_sec1=1.6, recent_sec2=1.2, recent_sec3=0.8, recent_sec4=0.4, resume=False, scale=True, scale_factor=-0.5, schedule_epoch=10, schedule_on=1, span_dim1=5, span_dim2=3, span_dim3=2, spanning_sec=6, task='action_anticipation', topK=1, trainval=False, verb_class=125, verb_loss_weight=1.0, verb_noun_scores=True, video_feat_dim=1024, weight_flow=0.1, weight_obj=0.25, weight_rgb=0.4, weight_roi=0.25)
Populating Dataset: 100% 23493/23493 [00:33<00:00, 694.22it/s]
Populating Dataset: 100% 4979/4979 [00:07<00:00, 689.38it/s]
Add verb losses
Add noun losses
/usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:134: UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/pytorch/aten/src/ATen/native/cuda/Loss.cu:455: nll_loss_backward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [1,0,0] Assertion t >= 0 && t < n_classes failed.
/pytorch/aten/src/ATen/native/cuda/Loss.cu:455: nll_loss_backward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [4,0,0] Assertion t >= 0 && t < n_classes failed.
/pytorch/aten/src/ATen/native/cuda/Loss.cu:455: nll_loss_backward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [7,0,0] Assertion t >= 0 && t < n_classes failed.
Traceback (most recent call last):
File "main_anticipation.py", line 674, in
main()
File "main_anticipation.py", line 531, in main
start_epoch, start_best_perf, schedule_on)
File "main_anticipation.py", line 400, in train_validation
loss.backward()
File "/usr/local/lib/python3.7/dist-packages/torch/_tensor.py", line 307, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "/usr/local/lib/python3.7/dist-packages/torch/autograd/init.py", line 156, in backward
allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag
RuntimeError: CUDA error: device-side assert triggered
The text was updated successfully, but these errors were encountered:
This error occurs when the labels are outside the range of the outputs of the model. I ran the code again and didn't encounter such a problem.
Could you check if you are mistakenly using EPIC-100 annotations? You should download the EPIC-55 (only) annotations from here: https://github.com/fpv-iplab/rulstm/tree/master/RULSTM/data/ek55
You can print the max label number for verb/noun/action and compare them with the classifier head output sizes to see where the mismatch is.
Hi,
I'm having this errorError running Epic-Kitchens-55. Have you encountered this before? Thanks
Save file name anti_mod_rgb_span_6_s1_5_s2_3_s3_2_recent_2_r1_1.6_r2_1.2_r3_0.8_r4_0.4_bs_10_drop_0.3_lr_0.0001_dimLa_512_dimLi_512_epoc_15_vb_nn
Printing Arguments
Namespace(add_noun_loss=True, add_verb_loss=True, alpha=1, batch_size=10, best_model='best', debug_on=False, display_every=10, dropout_rate=0.3, ek100=False, epochs=15, img_tmpl='frame_{:010d}.jpg', json_directory='tempAgg_ant_rec//models_anticipation/', latent_dim=512, linear_dim=512, lr=0.0001, modality='rgb', mode='train', noun_class=352, noun_loss_weight=1.0, num_class=2513, num_workers=0, past_attention=True, path_to_data='/content/drive/MyDrive/Individual_Project/Models/RULSTM/rulstm-master/RULSTM/data/ek55', path_to_models='models_anticipation/ek55', recent_dim=2, recent_sec1=1.6, recent_sec2=1.2, recent_sec3=0.8, recent_sec4=0.4, resume=False, scale=True, scale_factor=-0.5, schedule_epoch=10, schedule_on=1, span_dim1=5, span_dim2=3, span_dim3=2, spanning_sec=6, task='action_anticipation', topK=1, trainval=False, verb_class=125, verb_loss_weight=1.0, verb_noun_scores=True, video_feat_dim=1024, weight_flow=0.1, weight_obj=0.25, weight_rgb=0.4, weight_roi=0.25)
Populating Dataset: 100% 23493/23493 [00:33<00:00, 694.22it/s]
Populating Dataset: 100% 4979/4979 [00:07<00:00, 689.38it/s]
Add verb losses
Add noun losses
/usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:134: UserWarning: Detected call of
lr_scheduler.step()
beforeoptimizer.step()
. In PyTorch 1.1.0 and later, you should call them in the opposite order:optimizer.step()
beforelr_scheduler.step()
. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/pytorch/aten/src/ATen/native/cuda/Loss.cu:455: nll_loss_backward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [1,0,0] Assertion
t >= 0 && t < n_classes
failed./pytorch/aten/src/ATen/native/cuda/Loss.cu:455: nll_loss_backward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [4,0,0] Assertion
t >= 0 && t < n_classes
failed./pytorch/aten/src/ATen/native/cuda/Loss.cu:455: nll_loss_backward_reduce_cuda_kernel_2d: block: [0,0,0], thread: [7,0,0] Assertion
t >= 0 && t < n_classes
failed.Traceback (most recent call last):
File "main_anticipation.py", line 674, in
main()
File "main_anticipation.py", line 531, in main
start_epoch, start_best_perf, schedule_on)
File "main_anticipation.py", line 400, in train_validation
loss.backward()
File "/usr/local/lib/python3.7/dist-packages/torch/_tensor.py", line 307, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "/usr/local/lib/python3.7/dist-packages/torch/autograd/init.py", line 156, in backward
allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag
RuntimeError: CUDA error: device-side assert triggered
The text was updated successfully, but these errors were encountered: