This repository has been archived by the owner on Oct 12, 2022. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 421
/
fiber.d
2019 lines (1796 loc) · 64.8 KB
/
fiber.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* The fiber module provides OS-indepedent lightweight threads aka fibers.
*
* Copyright: Copyright Sean Kelly 2005 - 2012.
* License: Distributed under the
* $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0).
* (See accompanying file LICENSE)
* Authors: Sean Kelly, Walter Bright, Alex Rønne Petersen, Martin Nowak
* Source: $(DRUNTIMESRC core/thread/fiber.d)
*/
module core.thread.fiber;
import core.thread.osthread;
import core.thread.threadgroup;
import core.thread.types;
import core.thread.context;
///////////////////////////////////////////////////////////////////////////////
// Fiber Platform Detection
///////////////////////////////////////////////////////////////////////////////
version (GNU)
{
import gcc.builtins;
version (GNU_StackGrowsDown)
version = StackGrowsDown;
}
else
{
// this should be true for most architectures
version = StackGrowsDown;
}
version (Windows)
{
import core.stdc.stdlib : malloc, free;
import core.sys.windows.winbase;
import core.sys.windows.winnt;
}
private
{
version (D_InlineAsm_X86)
{
version (Windows)
version = AsmX86_Windows;
else version (Posix)
version = AsmX86_Posix;
version = AlignFiberStackTo16Byte;
}
else version (D_InlineAsm_X86_64)
{
version (Windows)
{
version = AsmX86_64_Windows;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AsmX86_64_Posix;
version = AlignFiberStackTo16Byte;
}
}
else version (PPC)
{
version (OSX)
{
version = AsmPPC_Darwin;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AsmPPC_Posix;
version = AsmExternal;
}
}
else version (PPC64)
{
version (OSX)
{
version = AsmPPC_Darwin;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
else version (Posix)
{
version = AlignFiberStackTo16Byte;
}
}
else version (MIPS_O32)
{
version (Posix)
{
version = AsmMIPS_O32_Posix;
version = AsmExternal;
}
}
else version (AArch64)
{
version (Posix)
{
version = AsmAArch64_Posix;
version = AsmExternal;
version = AlignFiberStackTo16Byte;
}
}
else version (ARM)
{
version (Posix)
{
version = AsmARM_Posix;
version = AsmExternal;
}
}
else version (SPARC)
{
// NOTE: The SPARC ABI specifies only doubleword alignment.
version = AlignFiberStackTo16Byte;
}
else version (SPARC64)
{
version = AlignFiberStackTo16Byte;
}
version (Posix)
{
version (AsmX86_Windows) {} else
version (AsmX86_Posix) {} else
version (AsmX86_64_Windows) {} else
version (AsmX86_64_Posix) {} else
version (AsmExternal) {} else
{
// NOTE: The ucontext implementation requires architecture specific
// data definitions to operate so testing for it must be done
// by checking for the existence of ucontext_t rather than by
// a version identifier. Please note that this is considered
// an obsolescent feature according to the POSIX spec, so a
// custom solution is still preferred.
import core.sys.posix.ucontext;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Fiber Entry Point and Context Switch
///////////////////////////////////////////////////////////////////////////////
private
{
import core.atomic : atomicStore, cas, MemoryOrder;
import core.exception : onOutOfMemoryError;
import core.stdc.stdlib : abort;
extern (C) void fiber_entryPoint() nothrow
{
Fiber obj = Fiber.getThis();
assert( obj );
assert( Thread.getThis().m_curr is obj.m_ctxt );
atomicStore!(MemoryOrder.raw)(*cast(shared)&Thread.getThis().m_lock, false);
obj.m_ctxt.tstack = obj.m_ctxt.bstack;
obj.m_state = Fiber.State.EXEC;
try
{
obj.run();
}
catch ( Throwable t )
{
obj.m_unhandled = t;
}
static if ( __traits( compiles, ucontext_t ) )
obj.m_ucur = &obj.m_utxt;
obj.m_state = Fiber.State.TERM;
obj.switchOut();
}
// Look above the definition of 'class Fiber' for some information about the implementation of this routine
version (AsmExternal)
{
extern (C) void fiber_switchContext( void** oldp, void* newp ) nothrow @nogc;
version (AArch64)
extern (C) void fiber_trampoline() nothrow;
}
else
extern (C) void fiber_switchContext( void** oldp, void* newp ) nothrow @nogc
{
// NOTE: The data pushed and popped in this routine must match the
// default stack created by Fiber.initStack or the initial
// switch into a new context will fail.
version (AsmX86_Windows)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push EBP;
mov EBP, ESP;
push EDI;
push ESI;
push EBX;
push dword ptr FS:[0];
push dword ptr FS:[4];
push dword ptr FS:[8];
push EAX;
// store oldp again with more accurate address
mov EAX, dword ptr 8[EBP];
mov [EAX], ESP;
// load newp to begin context switch
mov ESP, dword ptr 12[EBP];
// load saved state from new stack
pop EAX;
pop dword ptr FS:[8];
pop dword ptr FS:[4];
pop dword ptr FS:[0];
pop EBX;
pop ESI;
pop EDI;
pop EBP;
// 'return' to complete switch
pop ECX;
jmp ECX;
}
}
else version (AsmX86_64_Windows)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
// NOTE: When changing the layout of registers on the stack,
// make sure that the XMM registers are still aligned.
// On function entry, the stack is guaranteed to not
// be aligned to 16 bytes because of the return address
// on the stack.
push RBP;
mov RBP, RSP;
push R12;
push R13;
push R14;
push R15;
push RDI;
push RSI;
// 7 registers = 56 bytes; stack is now aligned to 16 bytes
sub RSP, 160;
movdqa [RSP + 144], XMM6;
movdqa [RSP + 128], XMM7;
movdqa [RSP + 112], XMM8;
movdqa [RSP + 96], XMM9;
movdqa [RSP + 80], XMM10;
movdqa [RSP + 64], XMM11;
movdqa [RSP + 48], XMM12;
movdqa [RSP + 32], XMM13;
movdqa [RSP + 16], XMM14;
movdqa [RSP], XMM15;
push RBX;
xor RAX,RAX;
push qword ptr GS:[RAX];
push qword ptr GS:8[RAX];
push qword ptr GS:16[RAX];
// store oldp
mov [RCX], RSP;
// load newp to begin context switch
mov RSP, RDX;
// load saved state from new stack
pop qword ptr GS:16[RAX];
pop qword ptr GS:8[RAX];
pop qword ptr GS:[RAX];
pop RBX;
movdqa XMM15, [RSP];
movdqa XMM14, [RSP + 16];
movdqa XMM13, [RSP + 32];
movdqa XMM12, [RSP + 48];
movdqa XMM11, [RSP + 64];
movdqa XMM10, [RSP + 80];
movdqa XMM9, [RSP + 96];
movdqa XMM8, [RSP + 112];
movdqa XMM7, [RSP + 128];
movdqa XMM6, [RSP + 144];
add RSP, 160;
pop RSI;
pop RDI;
pop R15;
pop R14;
pop R13;
pop R12;
pop RBP;
// 'return' to complete switch
pop RCX;
jmp RCX;
}
}
else version (AsmX86_Posix)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push EBP;
mov EBP, ESP;
push EDI;
push ESI;
push EBX;
push EAX;
// store oldp again with more accurate address
mov EAX, dword ptr 8[EBP];
mov [EAX], ESP;
// load newp to begin context switch
mov ESP, dword ptr 12[EBP];
// load saved state from new stack
pop EAX;
pop EBX;
pop ESI;
pop EDI;
pop EBP;
// 'return' to complete switch
pop ECX;
jmp ECX;
}
}
else version (AsmX86_64_Posix)
{
asm pure nothrow @nogc
{
naked;
// save current stack state
push RBP;
mov RBP, RSP;
push RBX;
push R12;
push R13;
push R14;
push R15;
// store oldp
mov [RDI], RSP;
// load newp to begin context switch
mov RSP, RSI;
// load saved state from new stack
pop R15;
pop R14;
pop R13;
pop R12;
pop RBX;
pop RBP;
// 'return' to complete switch
pop RCX;
jmp RCX;
}
}
else static if ( __traits( compiles, ucontext_t ) )
{
Fiber cfib = Fiber.getThis();
void* ucur = cfib.m_ucur;
*oldp = &ucur;
swapcontext( **(cast(ucontext_t***) oldp),
*(cast(ucontext_t**) newp) );
}
else
static assert(0, "Not implemented");
}
}
///////////////////////////////////////////////////////////////////////////////
// Fiber
///////////////////////////////////////////////////////////////////////////////
/*
* Documentation of Fiber internals:
*
* The main routines to implement when porting Fibers to new architectures are
* fiber_switchContext and initStack. Some version constants have to be defined
* for the new platform as well, search for "Fiber Platform Detection and Memory Allocation".
*
* Fibers are based on a concept called 'Context'. A Context describes the execution
* state of a Fiber or main thread which is fully described by the stack, some
* registers and a return address at which the Fiber/Thread should continue executing.
* Please note that not only each Fiber has a Context, but each thread also has got a
* Context which describes the threads stack and state. If you call Fiber fib; fib.call
* the first time in a thread you switch from Threads Context into the Fibers Context.
* If you call fib.yield in that Fiber you switch out of the Fibers context and back
* into the Thread Context. (However, this is not always the case. You can call a Fiber
* from within another Fiber, then you switch Contexts between the Fibers and the Thread
* Context is not involved)
*
* In all current implementations the registers and the return address are actually
* saved on a Contexts stack.
*
* The fiber_switchContext routine has got two parameters:
* void** a: This is the _location_ where we have to store the current stack pointer,
* the stack pointer of the currently executing Context (Fiber or Thread).
* void* b: This is the pointer to the stack of the Context which we want to switch into.
* Note that we get the same pointer here as the one we stored into the void** a
* in a previous call to fiber_switchContext.
*
* In the simplest case, a fiber_switchContext rountine looks like this:
* fiber_switchContext:
* push {return Address}
* push {registers}
* copy {stack pointer} into {location pointed to by a}
* //We have now switch to the stack of a different Context!
* copy {b} into {stack pointer}
* pop {registers}
* pop {return Address}
* jump to {return Address}
*
* The GC uses the value returned in parameter a to scan the Fibers stack. It scans from
* the stack base to that value. As the GC dislikes false pointers we can actually optimize
* this a little: By storing registers which can not contain references to memory managed
* by the GC outside of the region marked by the stack base pointer and the stack pointer
* saved in fiber_switchContext we can prevent the GC from scanning them.
* Such registers are usually floating point registers and the return address. In order to
* implement this, we return a modified stack pointer from fiber_switchContext. However,
* we have to remember that when we restore the registers from the stack!
*
* --------------------------- <= Stack Base
* | Frame | <= Many other stack frames
* | Frame |
* |-------------------------| <= The last stack frame. This one is created by fiber_switchContext
* | registers with pointers |
* | | <= Stack pointer. GC stops scanning here
* | return address |
* |floating point registers |
* --------------------------- <= Real Stack End
*
* fiber_switchContext:
* push {registers with pointers}
* copy {stack pointer} into {location pointed to by a}
* push {return Address}
* push {Floating point registers}
* //We have now switch to the stack of a different Context!
* copy {b} into {stack pointer}
* //We now have to adjust the stack pointer to point to 'Real Stack End' so we can pop
* //the FP registers
* //+ or - depends on if your stack grows downwards or upwards
* {stack pointer} = {stack pointer} +- ({FPRegisters}.sizeof + {return address}.sizeof}
* pop {Floating point registers}
* pop {return Address}
* pop {registers with pointers}
* jump to {return Address}
*
* So the question now is which registers need to be saved? This depends on the specific
* architecture ABI of course, but here are some general guidelines:
* - If a register is callee-save (if the callee modifies the register it must saved and
* restored by the callee) it needs to be saved/restored in switchContext
* - If a register is caller-save it needn't be saved/restored. (Calling fiber_switchContext
* is a function call and the compiler therefore already must save these registers before
* calling fiber_switchContext)
* - Argument registers used for passing parameters to functions needn't be saved/restored
* - The return register needn't be saved/restored (fiber_switchContext hasn't got a return type)
* - All scratch registers needn't be saved/restored
* - The link register usually needn't be saved/restored (but sometimes it must be cleared -
* see below for details)
* - The frame pointer register - if it exists - is usually callee-save
* - All current implementations do not save control registers
*
* What happens on the first switch into a Fiber? We never saved a state for this fiber before,
* but the initial state is prepared in the initStack routine. (This routine will also be called
* when a Fiber is being resetted). initStack must produce exactly the same stack layout as the
* part of fiber_switchContext which saves the registers. Pay special attention to set the stack
* pointer correctly if you use the GC optimization mentioned before. the return Address saved in
* initStack must be the address of fiber_entrypoint.
*
* There's now a small but important difference between the first context switch into a fiber and
* further context switches. On the first switch, Fiber.call is used and the returnAddress in
* fiber_switchContext will point to fiber_entrypoint. The important thing here is that this jump
* is a _function call_, we call fiber_entrypoint by jumping before it's function prologue. On later
* calls, the user used yield() in a function, and therefore the return address points into a user
* function, after the yield call. So here the jump in fiber_switchContext is a _function return_,
* not a function call!
*
* The most important result of this is that on entering a function, i.e. fiber_entrypoint, we
* would have to provide a return address / set the link register once fiber_entrypoint
* returns. Now fiber_entrypoint does never return and therefore the actual value of the return
* address / link register is never read/used and therefore doesn't matter. When fiber_switchContext
* performs a _function return_ the value in the link register doesn't matter either.
* However, the link register will still be saved to the stack in fiber_entrypoint and some
* exception handling / stack unwinding code might read it from this stack location and crash.
* The exact solution depends on your architecture, but see the ARM implementation for a way
* to deal with this issue.
*
* The ARM implementation is meant to be used as a kind of documented example implementation.
* Look there for a concrete example.
*
* FIXME: fiber_entrypoint might benefit from a @noreturn attribute, but D doesn't have one.
*/
/**
* This class provides a cooperative concurrency mechanism integrated with the
* threading and garbage collection functionality. Calling a fiber may be
* considered a blocking operation that returns when the fiber yields (via
* Fiber.yield()). Execution occurs within the context of the calling thread
* so synchronization is not necessary to guarantee memory visibility so long
* as the same thread calls the fiber each time. Please note that there is no
* requirement that a fiber be bound to one specific thread. Rather, fibers
* may be freely passed between threads so long as they are not currently
* executing. Like threads, a new fiber thread may be created using either
* derivation or composition, as in the following example.
*
* Warning:
* Status registers are not saved by the current implementations. This means
* floating point exception status bits (overflow, divide by 0), rounding mode
* and similar stuff is set per-thread, not per Fiber!
*
* Warning:
* On ARM FPU registers are not saved if druntime was compiled as ARM_SoftFloat.
* If such a build is used on a ARM_SoftFP system which actually has got a FPU
* and other libraries are using the FPU registers (other code is compiled
* as ARM_SoftFP) this can cause problems. Druntime must be compiled as
* ARM_SoftFP in this case.
*
* Authors: Based on a design by Mikola Lysenko.
*/
class Fiber
{
///////////////////////////////////////////////////////////////////////////
// Initialization
///////////////////////////////////////////////////////////////////////////
version (Windows)
// exception handling walks the stack, invoking DbgHelp.dll which
// needs up to 16k of stack space depending on the version of DbgHelp.dll,
// the existence of debug symbols and other conditions. Avoid causing
// stack overflows by defaulting to a larger stack size
enum defaultStackPages = 8;
else
enum defaultStackPages = 4;
/**
* Initializes a fiber object which is associated with a static
* D function.
*
* Params:
* fn = The fiber function.
* sz = The stack size for this fiber.
* guardPageSize = size of the guard page to trap fiber's stack
* overflows. Beware that using this will increase
* the number of mmaped regions on platforms using mmap
* so an OS-imposed limit may be hit.
*
* In:
* fn must not be null.
*/
this( void function() fn, size_t sz = PAGESIZE * defaultStackPages,
size_t guardPageSize = PAGESIZE ) nothrow
in
{
assert( fn );
}
do
{
allocStack( sz, guardPageSize );
reset( fn );
}
/**
* Initializes a fiber object which is associated with a dynamic
* D function.
*
* Params:
* dg = The fiber function.
* sz = The stack size for this fiber.
* guardPageSize = size of the guard page to trap fiber's stack
* overflows. Beware that using this will increase
* the number of mmaped regions on platforms using mmap
* so an OS-imposed limit may be hit.
*
* In:
* dg must not be null.
*/
this( void delegate() dg, size_t sz = PAGESIZE * defaultStackPages,
size_t guardPageSize = PAGESIZE ) nothrow
in
{
assert( dg );
}
do
{
allocStack( sz, guardPageSize );
reset( dg );
}
/**
* Cleans up any remaining resources used by this object.
*/
~this() nothrow @nogc
{
// NOTE: A live reference to this object will exist on its associated
// stack from the first time its call() method has been called
// until its execution completes with State.TERM. Thus, the only
// times this dtor should be called are either if the fiber has
// terminated (and therefore has no active stack) or if the user
// explicitly deletes this object. The latter case is an error
// but is not easily tested for, since State.HOLD may imply that
// the fiber was just created but has never been run. There is
// not a compelling case to create a State.INIT just to offer a
// means of ensuring the user isn't violating this object's
// contract, so for now this requirement will be enforced by
// documentation only.
freeStack();
}
///////////////////////////////////////////////////////////////////////////
// General Actions
///////////////////////////////////////////////////////////////////////////
/**
* Transfers execution to this fiber object. The calling context will be
* suspended until the fiber calls Fiber.yield() or until it terminates
* via an unhandled exception.
*
* Params:
* rethrow = Rethrow any unhandled exception which may have caused this
* fiber to terminate.
*
* In:
* This fiber must be in state HOLD.
*
* Throws:
* Any exception not handled by the joined thread.
*
* Returns:
* Any exception not handled by this fiber if rethrow = false, null
* otherwise.
*/
// Not marked with any attributes, even though `nothrow @nogc` works
// because it calls arbitrary user code. Most of the implementation
// is already `@nogc nothrow`, but in order for `Fiber.call` to
// propagate the attributes of the user's function, the Fiber
// class needs to be templated.
final Throwable call( Rethrow rethrow = Rethrow.yes )
{
return rethrow ? call!(Rethrow.yes)() : call!(Rethrow.no);
}
/// ditto
final Throwable call( Rethrow rethrow )()
{
callImpl();
if ( m_unhandled )
{
Throwable t = m_unhandled;
m_unhandled = null;
static if ( rethrow )
throw t;
else
return t;
}
return null;
}
private void callImpl() nothrow @nogc
in
{
assert( m_state == State.HOLD );
}
do
{
Fiber cur = getThis();
static if ( __traits( compiles, ucontext_t ) )
m_ucur = cur ? &cur.m_utxt : &Fiber.sm_utxt;
setThis( this );
this.switchIn();
setThis( cur );
static if ( __traits( compiles, ucontext_t ) )
m_ucur = null;
// NOTE: If the fiber has terminated then the stack pointers must be
// reset. This ensures that the stack for this fiber is not
// scanned if the fiber has terminated. This is necessary to
// prevent any references lingering on the stack from delaying
// the collection of otherwise dead objects. The most notable
// being the current object, which is referenced at the top of
// fiber_entryPoint.
if ( m_state == State.TERM )
{
m_ctxt.tstack = m_ctxt.bstack;
}
}
/// Flag to control rethrow behavior of $(D $(LREF call))
enum Rethrow : bool { no, yes }
/**
* Resets this fiber so that it may be re-used, optionally with a
* new function/delegate. This routine should only be called for
* fibers that have terminated, as doing otherwise could result in
* scope-dependent functionality that is not executed.
* Stack-based classes, for example, may not be cleaned up
* properly if a fiber is reset before it has terminated.
*
* In:
* This fiber must be in state TERM or HOLD.
*/
final void reset() nothrow @nogc
in
{
assert( m_state == State.TERM || m_state == State.HOLD );
}
do
{
m_ctxt.tstack = m_ctxt.bstack;
m_state = State.HOLD;
initStack();
m_unhandled = null;
}
/// ditto
final void reset( void function() fn ) nothrow @nogc
{
reset();
m_call = fn;
}
/// ditto
final void reset( void delegate() dg ) nothrow @nogc
{
reset();
m_call = dg;
}
///////////////////////////////////////////////////////////////////////////
// General Properties
///////////////////////////////////////////////////////////////////////////
/// A fiber may occupy one of three states: HOLD, EXEC, and TERM.
enum State
{
/** The HOLD state applies to any fiber that is suspended and ready to
be called. */
HOLD,
/** The EXEC state will be set for any fiber that is currently
executing. */
EXEC,
/** The TERM state is set when a fiber terminates. Once a fiber
terminates, it must be reset before it may be called again. */
TERM
}
/**
* Gets the current state of this fiber.
*
* Returns:
* The state of this fiber as an enumerated value.
*/
final @property State state() const @safe pure nothrow @nogc
{
return m_state;
}
///////////////////////////////////////////////////////////////////////////
// Actions on Calling Fiber
///////////////////////////////////////////////////////////////////////////
/**
* Forces a context switch to occur away from the calling fiber.
*/
static void yield() nothrow @nogc
{
Fiber cur = getThis();
assert( cur, "Fiber.yield() called with no active fiber" );
assert( cur.m_state == State.EXEC );
static if ( __traits( compiles, ucontext_t ) )
cur.m_ucur = &cur.m_utxt;
cur.m_state = State.HOLD;
cur.switchOut();
cur.m_state = State.EXEC;
}
/**
* Forces a context switch to occur away from the calling fiber and then
* throws obj in the calling fiber.
*
* Params:
* t = The object to throw.
*
* In:
* t must not be null.
*/
static void yieldAndThrow( Throwable t ) nothrow @nogc
in
{
assert( t );
}
do
{
Fiber cur = getThis();
assert( cur, "Fiber.yield() called with no active fiber" );
assert( cur.m_state == State.EXEC );
static if ( __traits( compiles, ucontext_t ) )
cur.m_ucur = &cur.m_utxt;
cur.m_unhandled = t;
cur.m_state = State.HOLD;
cur.switchOut();
cur.m_state = State.EXEC;
}
///////////////////////////////////////////////////////////////////////////
// Fiber Accessors
///////////////////////////////////////////////////////////////////////////
/**
* Provides a reference to the calling fiber or null if no fiber is
* currently active.
*
* Returns:
* The fiber object representing the calling fiber or null if no fiber
* is currently active within this thread. The result of deleting this object is undefined.
*/
static Fiber getThis() @safe nothrow @nogc
{
return sm_this;
}
///////////////////////////////////////////////////////////////////////////
// Static Initialization
///////////////////////////////////////////////////////////////////////////
version (Posix)
{
static this()
{
static if ( __traits( compiles, ucontext_t ) )
{
int status = getcontext( &sm_utxt );
assert( status == 0 );
}
}
}
private:
//
// Fiber entry point. Invokes the function or delegate passed on
// construction (if any).
//
final void run()
{
m_call();
}
//
// Standard fiber data
//
Callable m_call;
bool m_isRunning;
Throwable m_unhandled;
State m_state;
private:
///////////////////////////////////////////////////////////////////////////
// Stack Management
///////////////////////////////////////////////////////////////////////////
//
// Allocate a new stack for this fiber.
//
final void allocStack( size_t sz, size_t guardPageSize ) nothrow
in
{
assert( !m_pmem && !m_ctxt );
}
do
{
// adjust alloc size to a multiple of PAGESIZE
sz += PAGESIZE - 1;
sz -= sz % PAGESIZE;
// NOTE: This instance of Thread.Context is dynamic so Fiber objects
// can be collected by the GC so long as no user level references
// to the object exist. If m_ctxt were not dynamic then its
// presence in the global context list would be enough to keep
// this object alive indefinitely. An alternative to allocating
// room for this struct explicitly would be to mash it into the
// base of the stack being allocated below. However, doing so
// requires too much special logic to be worthwhile.
m_ctxt = new StackContext;
version (Windows)
{
// reserve memory for stack
m_pmem = VirtualAlloc( null,
sz + guardPageSize,
MEM_RESERVE,
PAGE_NOACCESS );
if ( !m_pmem )
onOutOfMemoryError();
version (StackGrowsDown)
{
void* stack = m_pmem + guardPageSize;
void* guard = m_pmem;
void* pbase = stack + sz;
}
else
{
void* stack = m_pmem;
void* guard = m_pmem + sz;
void* pbase = stack;
}
// allocate reserved stack segment
stack = VirtualAlloc( stack,
sz,
MEM_COMMIT,
PAGE_READWRITE );
if ( !stack )
onOutOfMemoryError();
if (guardPageSize)
{
// allocate reserved guard page
guard = VirtualAlloc( guard,
guardPageSize,
MEM_COMMIT,
PAGE_READWRITE | PAGE_GUARD );
if ( !guard )
onOutOfMemoryError();
}
m_ctxt.bstack = pbase;
m_ctxt.tstack = pbase;
m_size = sz;
}
else
{
version (Posix) import core.sys.posix.sys.mman; // mmap, MAP_ANON
static if ( __traits( compiles, ucontext_t ) )
{
// Stack size must be at least the minimum allowable by the OS.
if (sz < MINSIGSTKSZ)
sz = MINSIGSTKSZ;
}
static if ( __traits( compiles, mmap ) )
{
// Allocate more for the memory guard
sz += guardPageSize;
m_pmem = mmap( null,
sz,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON,
-1,
0 );
if ( m_pmem == MAP_FAILED )
m_pmem = null;
}
else static if ( __traits( compiles, valloc ) )
{
m_pmem = valloc( sz );
}
else static if ( __traits( compiles, malloc ) )
{
m_pmem = malloc( sz );