-
Notifications
You must be signed in to change notification settings - Fork 17
/
failure_policy.rs
472 lines (401 loc) · 14.4 KB
/
failure_policy.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
//! Contains various failure accrual policies, which are used for the failure rate detection.
use std::iter::Iterator;
use std::time::{Duration, Instant};
use super::backoff;
use super::clock;
use super::ema::Ema;
use super::windowed_adder::WindowedAdder;
static DEFAULT_BACKOFF: Duration = Duration::from_secs(300);
const SUCCESS: f64 = 1.0;
const FAILURE: f64 = 0.0;
const MILLIS_PER_SECOND: u64 = 1_000;
const DEFAULT_SUCCESS_RATE_THRESHOLD: f64 = 0.8;
const DEFAULT_SUCCESS_RATE_WINDOW_SECONDS: u64 = 30;
const DEFAULT_CONSECUTIVE_FAILURES: u32 = 5;
const DEFAULT_MINIMUM_REQUEST_THRESHOLD: u32 = 5;
/// A `FailurePolicy` is used to determine whether or not the backend died.
pub trait FailurePolicy {
/// Invoked when a request is successful.
fn record_success(&mut self);
/// Invoked when a non-probing request fails. If it returns `Some(Duration)`,
/// the backend will mark as the dead for the specified `Duration`.
fn mark_dead_on_failure(&mut self) -> Option<Duration>;
/// Invoked when a backend is revived after probing. Used to reset any history.
fn revived(&mut self);
/// Creates a `FailurePolicy` which uses both `self` and `rhs`.
fn or_else<R>(self, rhs: R) -> OrElse<Self, R>
where
Self: Sized,
{
OrElse {
left: self,
right: rhs,
}
}
}
/// Returns a policy based on an exponentially-weighted moving average success
/// rate over a time window. A moving average is used so the success rate
/// calculation is biased towards more recent requests.
///
/// If the computed weighted success rate is less than the required success rate,
/// `mark_dead_on_failure` will return `Some(Duration)`.
///
/// See `ema::Ema` for how the success rate is computed.
///
/// * `required_success_rate` - a success rate that must be met.
/// * `min_request_threshold` - minimum number of requests in the past `window`
/// for `mark_dead_on_failure` to return a duration.
/// * `window` - window over which the success rate is tracked. `mark_dead_on_failure`
/// will return None, until we get requests for a duration of at least `window`.
/// * `backoff` - stream of durations to use for the next duration
/// returned from `mark_dead_on_failure`
///
/// # Panics
///
/// When `required_success_rate` isn't in `[0.0, 1.0]` interval.
pub fn success_rate_over_time_window<BACKOFF>(
required_success_rate: f64,
min_request_threshold: u32,
window: Duration,
backoff: BACKOFF,
) -> SuccessRateOverTimeWindow<BACKOFF>
where
BACKOFF: Iterator<Item = Duration> + Clone,
{
assert!(
(0.0..=1.0).contains(&required_success_rate),
"required_success_rate must be [0, 1]: {}",
required_success_rate
);
let window_millis = window.as_secs() * MILLIS_PER_SECOND;
let request_counter = WindowedAdder::new(window, 5);
SuccessRateOverTimeWindow {
required_success_rate,
min_request_threshold,
ema: Ema::new(window_millis),
now: clock::now(),
window_millis,
backoff: backoff.clone(),
fresh_backoff: backoff,
request_counter,
}
}
/// A policy based on a maximum number of consecutive failures. If `num_failures`
/// occur consecutively, `mark_dead_on_failure` will return a Some(Duration) to
/// mark an endpoint dead for.
///
/// * `num_failures` - number of consecutive failures.
/// * `backoff` - stream of durations to use for the next duration
/// returned from `mark_dead_on_failure`
pub fn consecutive_failures<BACKOFF>(
num_failures: u32,
backoff: BACKOFF,
) -> ConsecutiveFailures<BACKOFF>
where
BACKOFF: Iterator<Item = Duration> + Clone,
{
ConsecutiveFailures {
num_failures,
consecutive_failures: 0,
backoff: backoff.clone(),
fresh_backoff: backoff,
}
}
impl Default for SuccessRateOverTimeWindow<backoff::EqualJittered> {
fn default() -> Self {
let backoff = backoff::equal_jittered(Duration::from_secs(10), Duration::from_secs(300));
let window = Duration::from_secs(DEFAULT_SUCCESS_RATE_WINDOW_SECONDS);
success_rate_over_time_window(
DEFAULT_SUCCESS_RATE_THRESHOLD,
DEFAULT_MINIMUM_REQUEST_THRESHOLD,
window,
backoff,
)
}
}
impl Default for ConsecutiveFailures<backoff::EqualJittered> {
fn default() -> Self {
let backoff = backoff::equal_jittered(Duration::from_secs(10), Duration::from_secs(300));
consecutive_failures(DEFAULT_CONSECUTIVE_FAILURES, backoff)
}
}
/// A policy based on an exponentially-weighted moving average success
/// rate over a time window. A moving average is used so the success rate
/// calculation is biased towards more recent requests.
#[derive(Debug)]
pub struct SuccessRateOverTimeWindow<BACKOFF> {
required_success_rate: f64,
min_request_threshold: u32,
ema: Ema,
now: Instant,
window_millis: u64,
backoff: BACKOFF,
fresh_backoff: BACKOFF,
request_counter: WindowedAdder,
}
impl<BACKOFF> SuccessRateOverTimeWindow<BACKOFF>
where
BACKOFF: Clone,
{
/// Returns seconds since instance was created.
fn elapsed_millis(&self) -> u64 {
let diff = clock::now() - self.now;
(diff.as_secs() * MILLIS_PER_SECOND) + u64::from(diff.subsec_millis())
}
/// We can trigger failure accrual if the `window` has passed, success rate is below
/// `required_success_rate`.
fn can_remove(&mut self, success_rate: f64) -> bool {
self.elapsed_millis() >= self.window_millis
&& success_rate < self.required_success_rate
&& self.request_counter.sum() >= i64::from(self.min_request_threshold)
}
}
impl<BACKOFF> FailurePolicy for SuccessRateOverTimeWindow<BACKOFF>
where
BACKOFF: Iterator<Item = Duration> + Clone,
{
#[inline]
fn record_success(&mut self) {
let timestamp = self.elapsed_millis();
self.ema.update(timestamp, SUCCESS);
self.request_counter.add(1);
}
#[inline]
fn mark_dead_on_failure(&mut self) -> Option<Duration> {
self.request_counter.add(1);
let timestamp = self.elapsed_millis();
let success_rate = self.ema.update(timestamp, FAILURE);
if self.can_remove(success_rate) {
let duration = self.backoff.next().unwrap_or(DEFAULT_BACKOFF);
Some(duration)
} else {
None
}
}
#[inline]
fn revived(&mut self) {
self.now = clock::now();
self.ema.reset();
self.request_counter.reset();
self.backoff = self.fresh_backoff.clone();
}
}
/// A policy based on a maximum number of consecutive failure
#[derive(Debug)]
pub struct ConsecutiveFailures<BACKOFF> {
num_failures: u32,
consecutive_failures: u32,
backoff: BACKOFF,
fresh_backoff: BACKOFF,
}
impl<BACKOFF> FailurePolicy for ConsecutiveFailures<BACKOFF>
where
BACKOFF: Iterator<Item = Duration> + Clone,
{
#[inline]
fn record_success(&mut self) {
self.consecutive_failures = 0;
}
#[inline]
fn mark_dead_on_failure(&mut self) -> Option<Duration> {
self.consecutive_failures += 1;
if self.consecutive_failures >= self.num_failures {
let duration = self.backoff.next().unwrap_or(DEFAULT_BACKOFF);
Some(duration)
} else {
None
}
}
#[inline]
fn revived(&mut self) {
self.consecutive_failures = 0;
self.backoff = self.fresh_backoff.clone();
}
}
/// A combinator used for join two policies into new one.
#[derive(Debug)]
pub struct OrElse<LEFT, RIGHT> {
left: LEFT,
right: RIGHT,
}
impl<LEFT, RIGHT> FailurePolicy for OrElse<LEFT, RIGHT>
where
LEFT: FailurePolicy,
RIGHT: FailurePolicy,
{
#[inline]
fn record_success(&mut self) {
self.left.record_success();
self.right.record_success();
}
#[inline]
fn mark_dead_on_failure(&mut self) -> Option<Duration> {
let left = self.left.mark_dead_on_failure();
let right = self.right.mark_dead_on_failure();
match (left, right) {
(Some(_), None) => left,
(None, Some(_)) => right,
(Some(l), Some(r)) => Some(l.max(r)),
_ => None,
}
}
#[inline]
fn revived(&mut self) {
self.left.revived();
self.right.revived();
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::backoff;
use super::super::clock;
mod consecutive_failures {
use super::*;
#[test]
fn fail_on_nth_attempt() {
let mut policy = consecutive_failures(3, constant_backoff());
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(Some(5.seconds()), policy.mark_dead_on_failure());
}
#[test]
fn reset_to_zero_on_revived() {
let mut policy = consecutive_failures(3, constant_backoff());
assert_eq!(None, policy.mark_dead_on_failure());
policy.revived();
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(Some(5.seconds()), policy.mark_dead_on_failure());
}
#[test]
fn reset_to_zero_on_success() {
let mut policy = consecutive_failures(3, constant_backoff());
assert_eq!(None, policy.mark_dead_on_failure());
policy.record_success();
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(Some(5.seconds()), policy.mark_dead_on_failure());
}
#[test]
fn iterates_over_backoff() {
let exp_backoff = exp_backoff();
let mut policy = consecutive_failures(1, exp_backoff.clone());
for i in exp_backoff.take(6) {
assert_eq!(Some(i), policy.mark_dead_on_failure());
}
}
}
mod success_rate_over_time_window {
use super::*;
#[test]
fn fail_when_success_rate_not_met() {
clock::freeze(|time| {
let exp_backoff = exp_backoff();
let success_rate_duration = 30.seconds();
let mut policy = success_rate_over_time_window(
0.5,
1,
success_rate_duration,
exp_backoff.clone(),
);
assert_eq!(None, policy.mark_dead_on_failure());
// Advance the time with 'success_rate_duration'.
// All mark_dead_on_failure calls should now return Some(Duration),
// and should iterate over expBackoffList.
time.advance(success_rate_duration);
for i in exp_backoff.take(6) {
assert_eq!(Some(i), policy.mark_dead_on_failure());
}
})
}
#[test]
fn respects_rps_threshold() {
clock::freeze(|time| {
let exp_backoff = exp_backoff();
let mut policy = success_rate_over_time_window(1.0, 5, 30.seconds(), exp_backoff);
time.advance(30.seconds());
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(None, policy.mark_dead_on_failure());
assert_eq!(Some(5.seconds()), policy.mark_dead_on_failure());
});
}
#[test]
fn revived_resets_failures() {
clock::freeze(|time| {
let exp_backoff = constant_backoff();
let success_rate_duration = 30.seconds();
let mut policy = success_rate_over_time_window(
0.5,
1,
success_rate_duration,
exp_backoff.clone(),
);
time.advance(success_rate_duration);
for i in exp_backoff.take(6) {
assert_eq!(Some(i), policy.mark_dead_on_failure());
}
policy.revived();
// Make sure the failure status has been reset.
// This will also be registered as the timestamp of the first request.
assert_eq!(None, policy.mark_dead_on_failure());
// One failure after 'success_rate_duration' should mark the node dead again.
time.advance(success_rate_duration);
assert!(policy.mark_dead_on_failure().is_some())
})
}
#[test]
fn fractional_success_rate() {
clock::freeze(|time| {
let exp_backoff = exp_backoff();
let success_rate_duration = 100.seconds();
let mut policy = success_rate_over_time_window(
0.5,
1,
success_rate_duration,
exp_backoff.clone(),
);
for _i in 0..100 {
time.advance(1.seconds());
policy.record_success();
}
// With a window of 100 seconds, it will take 100 * ln(2) + 1 = 70 seconds of failures
// for the success rate to drop below 0.5 (half-life).
for _i in 0..69 {
time.advance(1.seconds());
assert_eq!(None, policy.mark_dead_on_failure(), "n={}", _i);
}
// 70th failure should make markDeadOnFailure() return Some(_)
time.advance(1.seconds());
assert_eq!(Some(5.seconds()), policy.mark_dead_on_failure());
})
}
}
mod or_else {
use super::*;
#[test]
fn compose_policies() {
let mut policy = consecutive_failures(3, constant_backoff()).or_else(
success_rate_over_time_window(0.5, 100, 10.seconds(), constant_backoff()),
);
policy.record_success();
assert_eq!(None, policy.mark_dead_on_failure());
}
}
fn constant_backoff() -> backoff::Constant {
backoff::constant(5.seconds())
}
fn exp_backoff() -> backoff::Exponential {
backoff::exponential(5.seconds(), 60.seconds())
}
trait IntoDuration {
fn seconds(self) -> Duration;
}
impl IntoDuration for u64 {
fn seconds(self) -> Duration {
Duration::from_secs(self)
}
}
}