Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

find some pretrained model loss and hard code error. #3

Closed
wikeeyang opened this issue Jun 17, 2024 · 1 comment
Closed

find some pretrained model loss and hard code error. #3

wikeeyang opened this issue Jun 17, 2024 · 1 comment

Comments

@wikeeyang
Copy link

Good project, I want to know what is the different between with StoryDiffusion.

env: windows 11 x64, Python3.10.11 + torch 2.1.0+ cu11.8, prepared all stable-diffusion-v1-5/sd-vae-ft-mse/IP-Adapter checkpoints.

error message in the terminal windows:


D:\AITest\AutoStudio\model\pipeline_stable_diffusion.py:41: FutureWarning: Importing DiffusionPipeline or ImagePipelineOutput from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.
from diffusers.pipeline_utils import DiffusionPipeline
Using box scale: (512, 512)
D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models\GroundingDINO\ms_deform_attn.py:31: UserWarning: Failed to load custom C++ ops. Running on CPU mode Only!
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ D:\AITest\AutoStudio\run_me.py:31 in │
│ │
│ 28 │
│ 29 from model.unet_2d_condition import UNet2DConditionModel │
│ 30 from model.utils import show_boxes, show_image, get_global_prompt │
│ ❱ 31 from model.autostudio import AUTOSTUDIO, AUTOSTUDIOPlus, AUTOSTUDIOXL, AUTOSTUDIOXLPlus │
│ 32 │
│ 33 from detectSam import EFFICIENT_SAM_MODEL, GROUNDING_DINO_MODEL │
│ 34 │
│ │
│ D:\AITest\AutoStudio\model\autostudio.py:16 in │
│ │
│ 13 │
│ 14 from PIL import Image │
│ 15 from typing import List │
│ ❱ 16 from detectSam import process_image │
│ 17 from diffusers.pipelines.controlnet import MultiControlNetModel │
│ 18 from safetensors import safe_open │
│ 19 from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection │
│ │
│ D:\AITest\AutoStudio/DETECT_SAM\detectSam.py:36 in │
│ │
│ 33 │ RESULTS = "results" │
│ 34 │ │
│ 35 │ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") │
│ ❱ 36 │ EFFICIENT_SAM_MODEL = load(device=DEVICE) │
│ 37 │ GROUNDING_DINO_MODEL = Model(f"{dpath}/Grounding-DINO/groundingdino/config/Grounding │
│ 38 │ │
│ 39 │ BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() │
│ │
│ D:\AITest\AutoStudio/DETECT_SAM\efficient_sam.py:14 in load │
│ │
│ 11 │
│ 12 def load(device: torch.device) -> torch.jit.ScriptModule: │
│ 13 │ if device.type == "cuda": │
│ ❱ 14 │ │ model = torch.jit.load(GPU_EFFICIENT_SAM_CHECKPOINT) │
│ 15 │ else: │
│ 16 │ │ model = torch.jit.load(CPU_EFFICIENT_SAM_CHECKPOINT) │
│ 17 │ model.eval() │
│ │
│ D:\AITest\AutoStudio\python310\lib\site-packages\torch\jit_serialization.py:152 in load │
│ │
│ 149 │ │
│ 150 │ if isinstance(f, str): │
│ 151 │ │ if not os.path.exists(f): # type: ignore[type-var] │
│ ❱ 152 │ │ │ raise ValueError(f"The provided filename {f} does not exist") # type: ignor │
│ 153 │ │ if os.path.isdir(f): │
│ 154 │ │ │ raise ValueError(f"The provided filename {f} is a directory") # type: ignor │
│ 155 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
ValueError: The provided filename D:\AITest\AutoStudio\DETECT_SAM/pretrain/efficient_sam_s_gpu.jit does not exist
Press any key to continue . . .

I find and download the efficient_sam_s_gpu.jit from "https://huggingface.co/merve/EfficientSAM" to put it above directory, and go ahead.

2.------
D:\AITest\AutoStudio\model\pipeline_stable_diffusion.py:41: FutureWarning: Importing DiffusionPipeline or ImagePipelineOutput from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.
from diffusers.pipeline_utils import DiffusionPipeline
Using box scale: (512, 512)
D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models\GroundingDINO\ms_deform_attn.py:31: UserWarning: Failed to load custom C++ ops. Running on CPU mode Only!
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\configuration_utils.py:629 in │
│ _get_config_dict │
│ │
│ 626 │ │ │ │
│ 627 │ │ │ try: │
│ 628 │ │ │ │ # Load from local folder or from cache or download from model Hub and ca │
│ ❱ 629 │ │ │ │ resolved_config_file = cached_file( │
│ 630 │ │ │ │ │ pretrained_model_name_or_path, │
│ 631 │ │ │ │ │ configuration_file, │
│ 632 │ │ │ │ │ cache_dir=cache_dir, │
│ │
│ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\utils\hub.py:417 in cached_file │
│ │
│ 414 │ user_agent = http_user_agent(user_agent) │
│ 415 │ try: │
│ 416 │ │ # Load from URL or cache if already cached │
│ ❱ 417 │ │ resolved_file = hf_hub_download( │
│ 418 │ │ │ path_or_repo_id, │
│ 419 │ │ │ filename, │
│ 420 │ │ │ subfolder=None if len(subfolder) == 0 else subfolder, │
│ │
│ D:\AITest\AutoStudio\python310\lib\site-packages\huggingface_hub\utils_validators.py:110 in │
inner_fn │
│ │
│ 107 │ │ │ kwargs.items(), # Kwargs values │
│ 108 │ │ ): │
│ 109 │ │ │ if arg_name in ["repo_id", "from_id", "to_id"]: │
│ ❱ 110 │ │ │ │ validate_repo_id(arg_value) │
│ 111 │ │ │ │
│ 112 │ │ │ elif arg_name == "token" and arg_value is not None: │
│ 113 │ │ │ │ has_token = True │
│ │
│ D:\AITest\AutoStudio\python310\lib\site-packages\huggingface_hub\utils_validators.py:158 in │
│ validate_repo_id │
│ │
│ 155 │ │ raise HFValidationError(f"Repo id must be a string, not {type(repo_id)}: '{repo

│ 156 │ │
│ 157 │ if repo_id.count("/") > 1: │
│ ❱ 158 │ │ raise HFValidationError( │
│ 159 │ │ │ "Repo id must be in the form 'repo_name' or 'namespace/repo_name':" │
│ 160 │ │ │ f" '{repo_id}'. Use repo_type argument if needed." │
│ 161 │ │ ) │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name':
'/data2/chengjunhao/THEATERGEN/pretrained_models/dino_bert'. Use repo_type argument if needed.

During handling of the above exception, another exception occurred:

╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ D:\AITest\AutoStudio\run_me.py:31 in │
│ │
│ 28 │
│ 29 from model.unet_2d_condition import UNet2DConditionModel │
│ 30 from model.utils import show_boxes, show_image, get_global_prompt │
│ ❱ 31 from model.autostudio import AUTOSTUDIO, AUTOSTUDIOPlus, AUTOSTUDIOXL, AUTOSTUDIOXLPlus │
│ 32 │
│ 33 from detectSam import EFFICIENT_SAM_MODEL, GROUNDING_DINO_MODEL │
│ 34 │
│ │
│ D:\AITest\AutoStudio\model\autostudio.py:16 in │
│ │
│ 13 │
│ 14 from PIL import Image │
│ 15 from typing import List │
│ ❱ 16 from detectSam import process_image │
│ 17 from diffusers.pipelines.controlnet import MultiControlNetModel │
│ 18 from safetensors import safe_open │
│ 19 from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection │
│ │
│ D:\AITest\AutoStudio/DETECT_SAM\detectSam.py:37 in │
│ │
│ 34 │ │
│ 35 │ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") │
│ 36 │ EFFICIENT_SAM_MODEL = load(device=DEVICE) │
│ ❱ 37 │ GROUNDING_DINO_MODEL = Model(f"{dpath}/Grounding-DINO/groundingdino/config/Grounding │
│ 38 │ │
│ 39 │ BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() │
│ 40 │ MASK_ANNOTATOR = sv.MaskAnnotator() │
│ │
│ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\util\inference.py:142 in init
│ │
│ 139 │ │ model_checkpoint_path: str, │
│ 140 │ │ device: str = "cuda" │
│ 141 │ ): │
│ ❱ 142 │ │ self.model = load_model( │
│ 143 │ │ │ model_config_path=model_config_path, │
│ 144 │ │ │ model_checkpoint_path=model_checkpoint_path, │
│ 145 │ │ │ device=device │
│ │
│ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\util\inference.py:40 in load_model │
│ │
│ 37 def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda") │
│ 38 │ args = SLConfig.fromfile(model_config_path) │
│ 39 │ args.device = device │
│ ❱ 40 │ model = build_model(args) │
│ 41 │ checkpoint = torch.load(model_checkpoint_path, map_location="cpu") │
│ 42 │ model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) │
│ 43 │ model.eval() │
│ │
│ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models_init_.py:17 in │
│ build_model │
│ │
│ 14 │ │
│ 15 │ assert args.modelname in MODULE_BUILD_FUNCS.module_dict │
│ 16 │ build_func = MODULE_BUILD_FUNCS.get(args.modelname) │
│ ❱ 17 │ model = build_func(args) │
│ 18 │ return model │
│ 19 │
│ │
│ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models\GroundingDINO\groundingdino. │
│ py:395 in build_groundingdino │
│ │
│ 392 │ dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share │
│ 393 │ sub_sentence_present = args.sub_sentence_present │
│ 394 │ │
│ ❱ 395 │ model = GroundingDINO( │
│ 396 │ │ backbone, │
│ 397 │ │ transformer, │
│ 398 │ │ num_queries=args.num_queries, │
│ │
│ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models\GroundingDINO\groundingdino. │
│ py:115 in init
│ │
│ 112 │ │ │
│ 113 │ │ # bert │
│ 114 │ │ self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type) │
│ ❱ 115 │ │ self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type) │
│ 116 │ │ self.bert.pooler.dense.weight.requires_grad
(False) │
│ 117 │ │ self.bert.pooler.dense.bias.requires_grad_(False) │
│ 118 │ │ self.bert = BertModelWarper(bert_model=self.bert) │
│ │
│ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\util\get_tokenlizer.py:25 in │
│ get_pretrained_language_model │
│ │
│ 22 │
│ 23 def get_pretrained_language_model(text_encoder_type): │
│ 24 │ if text_encoder_type == "bert-base-uncased" or (os.path.isdir(text_encoder_type) and │
│ ❱ 25 │ │ return BertModel.from_pretrained("/data2/chengjunhao/THEATERGEN/pretrained_model │
│ 26 │ if text_encoder_type == "roberta-base": │
│ 27 │ │ return RobertaModel.from_pretrained(text_encoder_type) │
│ 28 │
│ │
│ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\modeling_utils.py:2251 in │
│ from_pretrained │
│ │
│ 2248 │ │ # Load config if we don't provide a configuration │
│ 2249 │ │ if not isinstance(config, PretrainedConfig): │
│ 2250 │ │ │ config_path = config if config is not None else pretrained_model_name_or_pat │
│ ❱ 2251 │ │ │ config, model_kwargs = cls.config_class.from_pretrained( │
│ 2252 │ │ │ │ config_path, │
│ 2253 │ │ │ │ cache_dir=cache_dir, │
│ 2254 │ │ │ │ return_unused_kwargs=True, │
│ │
│ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\configuration_utils.py:547 in │
│ from_pretrained │
│ │
│ 544 │ │ assert config.output_attentions == True │
│ 545 │ │ assert unused_kwargs == {"foo": False} │
│ 546 │ │ ```""" │
│ ❱ 547 │ │ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwarg │
│ 548 │ │ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["m │
│ 549 │ │ │ logger.warning( │
│ 550 │ │ │ │ f"You are using a model of type {config_dict['model_type']} to instantia │
│ │
│ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\configuration_utils.py:574 in │
│ get_config_dict │
│ │
│ 571 │ │ """ │
│ 572 │ │ original_kwargs = copy.deepcopy(kwargs) │
│ 573 │ │ # Get config dict associated with the base config file │
│ ❱ 574 │ │ config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwar │
│ 575 │ │ if "_commit_hash" in config_dict: │
│ 576 │ │ │ original_kwargs["_commit_hash"] = config_dict["_commit_hash"] │
│ 577 │
│ │
│ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\configuration_utils.py:650 in │
│ _get_config_dict │
│ │
│ 647 │ │ │ │ raise │
│ 648 │ │ │ except Exception: │
│ 649 │ │ │ │ # For any other exception, we throw a generic error. │
│ ❱ 650 │ │ │ │ raise EnvironmentError( │
│ 651 │ │ │ │ │ f"Can't load the configuration of '{pretrained_model_name_or_path}'. │
│ 652 │ │ │ │ │ " from 'https://huggingface.co/models', make sure you don't have a l │
│ 653 │ │ │ │ │ f" name. Otherwise, make sure '{pretrained_model_name_or_path}' is t │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
OSError: Can't load the configuration of '/data2/chengjunhao/THEATERGEN/pretrained_models/dino_bert'. If you were
trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name.
Otherwise, make sure '/data2/chengjunhao/THEATERGEN/pretrained_models/dino_bert' is the correct path to a directory
containing a config.json file
Press any key to continue . . .

I check the "https://github.com/IDEA-Research/GroundingDINO" and "https://github.com/donahowe/Theatergen", but can't find your pretrained model "dino_bert".

Please help me to check and analayze the error message, thanks!

@dengfenglai321
Copy link

Good project, I want to know what is the different between with StoryDiffusion.

env: windows 11 x64, Python3.10.11 + torch 2.1.0+ cu11.8, prepared all stable-diffusion-v1-5/sd-vae-ft-mse/IP-Adapter checkpoints.

error message in the terminal windows:

D:\AITest\AutoStudio\model\pipeline_stable_diffusion.py:41: FutureWarning: Importing DiffusionPipeline or ImagePipelineOutput from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead. from diffusers.pipeline_utils import DiffusionPipeline Using box scale: (512, 512) D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models\GroundingDINO\ms_deform_attn.py:31: UserWarning: Failed to load custom C++ ops. Running on CPU mode Only! warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!") ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ D:\AITest\AutoStudio\run_me.py:31 in │ │ │ │ 28 │ │ 29 from model.unet_2d_condition import UNet2DConditionModel │ │ 30 from model.utils import show_boxes, show_image, get_global_prompt │ │ ❱ 31 from model.autostudio import AUTOSTUDIO, AUTOSTUDIOPlus, AUTOSTUDIOXL, AUTOSTUDIOXLPlus │ │ 32 │ │ 33 from detectSam import EFFICIENT_SAM_MODEL, GROUNDING_DINO_MODEL │ │ 34 │ │ │ │ D:\AITest\AutoStudio\model\autostudio.py:16 in │ │ │ │ 13 │ │ 14 from PIL import Image │ │ 15 from typing import List │ │ ❱ 16 from detectSam import process_image │ │ 17 from diffusers.pipelines.controlnet import MultiControlNetModel │ │ 18 from safetensors import safe_open │ │ 19 from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection │ │ │ │ D:\AITest\AutoStudio/DETECT_SAM\detectSam.py:36 in │ │ │ │ 33 │ RESULTS = "results" │ │ 34 │ │ │ 35 │ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") │ │ ❱ 36 │ EFFICIENT_SAM_MODEL = load(device=DEVICE) │ │ 37 │ GROUNDING_DINO_MODEL = Model(f"{dpath}/Grounding-DINO/groundingdino/config/Grounding │ │ 38 │ │ │ 39 │ BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() │ │ │ │ D:\AITest\AutoStudio/DETECT_SAM\efficient_sam.py:14 in load │ │ │ │ 11 │ │ 12 def load(device: torch.device) -> torch.jit.ScriptModule: │ │ 13 │ if device.type == "cuda": │ │ ❱ 14 │ │ model = torch.jit.load(GPU_EFFICIENT_SAM_CHECKPOINT) │ │ 15 │ else: │ │ 16 │ │ model = torch.jit.load(CPU_EFFICIENT_SAM_CHECKPOINT) │ │ 17 │ model.eval() │ │ │ │ D:\AITest\AutoStudio\python310\lib\site-packages\torch\jit_serialization.py:152 in load │ │ │ │ 149 │ │ │ 150 │ if isinstance(f, str): │ │ 151 │ │ if not os.path.exists(f): # type: ignore[type-var] │ │ ❱ 152 │ │ │ raise ValueError(f"The provided filename {f} does not exist") # type: ignor │ │ 153 │ │ if os.path.isdir(f): │ │ 154 │ │ │ raise ValueError(f"The provided filename {f} is a directory") # type: ignor │ │ 155 │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ ValueError: The provided filename D:\AITest\AutoStudio\DETECT_SAM/pretrain/efficient_sam_s_gpu.jit does not exist Press any key to continue . . .

I find and download the efficient_sam_s_gpu.jit from "https://huggingface.co/merve/EfficientSAM" to put it above directory, and go ahead.

2.------ D:\AITest\AutoStudio\model\pipeline_stable_diffusion.py:41: FutureWarning: Importing DiffusionPipeline or ImagePipelineOutput from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead. from diffusers.pipeline_utils import DiffusionPipeline Using box scale: (512, 512) D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models\GroundingDINO\ms_deform_attn.py:31: UserWarning: Failed to load custom C++ ops. Running on CPU mode Only! warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!") ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\configuration_utils.py:629 in │ │ _get_config_dict │ │ │ │ 626 │ │ │ │ │ 627 │ │ │ try: │ │ 628 │ │ │ │ # Load from local folder or from cache or download from model Hub and ca │ │ ❱ 629 │ │ │ │ resolved_config_file = cached_file( │ │ 630 │ │ │ │ │ pretrained_model_name_or_path, │ │ 631 │ │ │ │ │ configuration_file, │ │ 632 │ │ │ │ │ cache_dir=cache_dir, │ │ │ │ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\utils\hub.py:417 in cached_file │ │ │ │ 414 │ user_agent = http_user_agent(user_agent) │ │ 415 │ try: │ │ 416 │ │ # Load from URL or cache if already cached │ │ ❱ 417 │ │ resolved_file = hf_hub_download( │ │ 418 │ │ │ path_or_repo_id, │ │ 419 │ │ │ filename, │ │ 420 │ │ │ subfolder=None if len(subfolder) == 0 else subfolder, │ │ │ │ D:\AITest\AutoStudio\python310\lib\site-packages\huggingface_hub\utils_validators.py:110 in │ │ inner_fn │ │ │ │ 107 │ │ │ kwargs.items(), # Kwargs values │ │ 108 │ │ ): │ │ 109 │ │ │ if arg_name in ["repo_id", "from_id", "to_id"]: │ │ ❱ 110 │ │ │ │ validate_repo_id(arg_value) │ │ 111 │ │ │ │ │ 112 │ │ │ elif arg_name == "token" and arg_value is not None: │ │ 113 │ │ │ │ has_token = True │ │ │ │ D:\AITest\AutoStudio\python310\lib\site-packages\huggingface_hub\utils_validators.py:158 in │ │ validate_repo_id │ │ │ │ 155 │ │ raise HFValidationError(f"Repo id must be a string, not {type(repo_id)}: '{repo │ │ 156 │ │ │ 157 │ if repo_id.count("/") > 1: │ │ ❱ 158 │ │ raise HFValidationError( │ │ 159 │ │ │ "Repo id must be in the form 'repo_name' or 'namespace/repo_name':" │ │ 160 │ │ │ f" '{repo_id}'. Use repo_type argument if needed." │ │ 161 │ │ ) │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '/data2/chengjunhao/THEATERGEN/pretrained_models/dino_bert'. Use repo_type argument if needed.

During handling of the above exception, another exception occurred:

╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ D:\AITest\AutoStudio\run_me.py:31 in │ │ │ │ 28 │ │ 29 from model.unet_2d_condition import UNet2DConditionModel │ │ 30 from model.utils import show_boxes, show_image, get_global_prompt │ │ ❱ 31 from model.autostudio import AUTOSTUDIO, AUTOSTUDIOPlus, AUTOSTUDIOXL, AUTOSTUDIOXLPlus │ │ 32 │ │ 33 from detectSam import EFFICIENT_SAM_MODEL, GROUNDING_DINO_MODEL │ │ 34 │ │ │ │ D:\AITest\AutoStudio\model\autostudio.py:16 in │ │ │ │ 13 │ │ 14 from PIL import Image │ │ 15 from typing import List │ │ ❱ 16 from detectSam import process_image │ │ 17 from diffusers.pipelines.controlnet import MultiControlNetModel │ │ 18 from safetensors import safe_open │ │ 19 from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection │ │ │ │ D:\AITest\AutoStudio/DETECT_SAM\detectSam.py:37 in │ │ │ │ 34 │ │ │ 35 │ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") │ │ 36 │ EFFICIENT_SAM_MODEL = load(device=DEVICE) │ │ ❱ 37 │ GROUNDING_DINO_MODEL = Model(f"{dpath}/Grounding-DINO/groundingdino/config/Grounding │ │ 38 │ │ │ 39 │ BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() │ │ 40 │ MASK_ANNOTATOR = sv.MaskAnnotator() │ │ │ │ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\util\inference.py:142 in init │ │ │ │ 139 │ │ model_checkpoint_path: str, │ │ 140 │ │ device: str = "cuda" │ │ 141 │ ): │ │ ❱ 142 │ │ self.model = load_model( │ │ 143 │ │ │ model_config_path=model_config_path, │ │ 144 │ │ │ model_checkpoint_path=model_checkpoint_path, │ │ 145 │ │ │ device=device │ │ │ │ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\util\inference.py:40 in load_model │ │ │ │ 37 def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda") │ │ 38 │ args = SLConfig.fromfile(model_config_path) │ │ 39 │ args.device = device │ │ ❱ 40 │ model = build_model(args) │ │ 41 │ checkpoint = torch.load(model_checkpoint_path, map_location="cpu") │ │ 42 │ model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) │ │ 43 │ model.eval() │ │ │ │ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models__init__.py:17 in │ │ build_model │ │ │ │ 14 │ │ │ 15 │ assert args.modelname in MODULE_BUILD_FUNCS.module_dict │ │ 16 │ build_func = MODULE_BUILD_FUNCS.get(args.modelname) │ │ ❱ 17 │ model = build_func(args) │ │ 18 │ return model │ │ 19 │ │ │ │ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models\GroundingDINO\groundingdino. │ │ py:395 in build_groundingdino │ │ │ │ 392 │ dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share │ │ 393 │ sub_sentence_present = args.sub_sentence_present │ │ 394 │ │ │ ❱ 395 │ model = GroundingDINO( │ │ 396 │ │ backbone, │ │ 397 │ │ transformer, │ │ 398 │ │ num_queries=args.num_queries, │ │ │ │ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\models\GroundingDINO\groundingdino. │ │ py:115 in init │ │ │ │ 112 │ │ │ │ 113 │ │ # bert │ │ 114 │ │ self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type) │ │ ❱ 115 │ │ self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type) │ │ 116 │ │ self.bert.pooler.dense.weight.requires_grad(False) │ │ 117 │ │ self.bert.pooler.dense.bias.requires_grad_(False) │ │ 118 │ │ self.bert = BertModelWarper(bert_model=self.bert) │ │ │ │ D:\AITest\AutoStudio\DETECT_SAM/Grounding-DINO\groundingdino\util\get_tokenlizer.py:25 in │ │ get_pretrained_language_model │ │ │ │ 22 │ │ 23 def get_pretrained_language_model(text_encoder_type): │ │ 24 │ if text_encoder_type == "bert-base-uncased" or (os.path.isdir(text_encoder_type) and │ │ ❱ 25 │ │ return BertModel.from_pretrained("/data2/chengjunhao/THEATERGEN/pretrained_model │ │ 26 │ if text_encoder_type == "roberta-base": │ │ 27 │ │ return RobertaModel.from_pretrained(text_encoder_type) │ │ 28 │ │ │ │ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\modeling_utils.py:2251 in │ │ from_pretrained │ │ │ │ 2248 │ │ # Load config if we don't provide a configuration │ │ 2249 │ │ if not isinstance(config, PretrainedConfig): │ │ 2250 │ │ │ config_path = config if config is not None else pretrained_model_name_or_pat │ │ ❱ 2251 │ │ │ config, model_kwargs = cls.config_class.from_pretrained( │ │ 2252 │ │ │ │ config_path, │ │ 2253 │ │ │ │ cache_dir=cache_dir, │ │ 2254 │ │ │ │ return_unused_kwargs=True, │ │ │ │ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\configuration_utils.py:547 in │ │ from_pretrained │ │ │ │ 544 │ │ assert config.output_attentions == True │ │ 545 │ │ assert unused_kwargs == {"foo": False} │ │ 546 │ │ ```""" │ │ ❱ 547 │ │ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwarg │ │ 548 │ │ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["m │ │ 549 │ │ │ logger.warning( │ │ 550 │ │ │ │ f"You are using a model of type {config_dict['model_type']} to instantia │ │ │ │ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\configuration_utils.py:574 in │ │ get_config_dict │ │ │ │ 571 │ │ """ │ │ 572 │ │ original_kwargs = copy.deepcopy(kwargs) │ │ 573 │ │ # Get config dict associated with the base config file │ │ ❱ 574 │ │ config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwar │ │ 575 │ │ if "_commit_hash" in config_dict: │ │ 576 │ │ │ original_kwargs["_commit_hash"] = config_dict["_commit_hash"] │ │ 577 │ │ │ │ D:\AITest\AutoStudio\python310\lib\site-packages\transformers\configuration_utils.py:650 in │ │ _get_config_dict │ │ │ │ 647 │ │ │ │ raise │ │ 648 │ │ │ except Exception: │ │ 649 │ │ │ │ # For any other exception, we throw a generic error. │ │ ❱ 650 │ │ │ │ raise EnvironmentError( │ │ 651 │ │ │ │ │ f"Can't load the configuration of '{pretrained_model_name_or_path}'. │ │ 652 │ │ │ │ │ " from 'https://huggingface.co/models', make sure you don't have a l │ │ 653 │ │ │ │ │ f" name. Otherwise, make sure '{pretrained_model_name_or_path}' is t │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ OSError: Can't load the configuration of '/data2/chengjunhao/THEATERGEN/pretrained_models/dino_bert'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure '/data2/chengjunhao/THEATERGEN/pretrained_models/dino_bert' is the correct path to a directory containing a config.json file Press any key to continue . . .

I check the "https://github.com/IDEA-Research/GroundingDINO" and "https://github.com/donahowe/Theatergen", but can't find your pretrained model "dino_bert".

Please help me to check and analayze the error message, thanks!

It's path of bert-base-uncased

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants