-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
221 lines (189 loc) · 7.29 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import subprocess
from typing import Any, List, Optional
from argparse import Namespace
import torch
from cog import BasePredictor, Input, Path, BaseModel
import data_loaders.humanml.utils.paramUtil as paramUtil
from data_loaders.get_data import get_dataset_loader
from data_loaders.humanml.scripts.motion_process import recover_from_ric
from data_loaders.humanml.utils.plot_script import plot_3d_motion
from data_loaders.tensors import collate
from model.cfg_sampler import ClassifierFreeSampleModel
from utils import dist_util
from utils.model_util import create_model_and_diffusion, load_model_wo_clip
from visualize.motions2hik import motions2hik
from generate import construct_template_variables
"""
In case of matplot lib issues it may be needed to delete model/data_loaders/humanml/utils/plot_script.py" in lines 89~92 as
suggested in https://github.com/GuyTevet/motion-diffusion-model/issues/6
"""
class ModelOutput(BaseModel):
json_file: Optional[Any]
animation: Optional[List[Path]]
def get_args():
args = Namespace()
args.fps = 20
args.model_path = "./save/humanml_trans_enc_512/model000200000.pt"
args.guidance_param = 2.5
args.unconstrained = False
args.dataset = "humanml"
args.cond_mask_prob = 1
args.emb_trans_dec = False
args.latent_dim = 512
args.layers = 8
args.arch = "trans_enc"
args.noise_schedule = "cosine"
args.sigma_small = True
args.lambda_vel = 0.0
args.lambda_rcxyz = 0.0
args.lambda_fc = 0.0
return args
class Predictor(BasePredictor):
def setup(self):
subprocess.run(["mkdir", "/root/.cache/clip"])
subprocess.run(["cp", "-r", "ViT-B-32.pt", "/root/.cache/clip"])
self.args = get_args()
self.num_frames = self.args.fps * 6
print("Loading dataset...")
# temporary data
self.data = get_dataset_loader(
name=self.args.dataset,
batch_size=1,
num_frames=196,
split="test",
hml_mode="text_only",
)
self.data.fixed_length = float(self.num_frames)
print("Creating model and diffusion...")
self.model, self.diffusion = create_model_and_diffusion(self.args, self.data)
print(f"Loading checkpoints from...")
state_dict = torch.load(self.args.model_path, map_location="cpu")
load_model_wo_clip(self.model, state_dict)
if self.args.guidance_param != 1:
self.model = ClassifierFreeSampleModel(
self.model
) # wrapping model with the classifier-free sampler
self.model.to(dist_util.dev())
self.model.eval() # disable random masking
def predict(
self,
prompt: str = Input(
default="the person walked forward and is picking up his toolbox."
),
num_repetitions: int = Input(default=3, description="How many"),
output_format: str = Input(
description='Choose the format of the output, either an animation or a json file of the animation data.\
The json format is: {"thetas": [...], "root_translation": [...], "joint_map": [...]}, where "thetas" \
is an [nframes x njoints x 3] array of joint rotations in degrees, "root_translation" is an [nframes x 3] \
array of (X, Y, Z) positions of the root, and "joint_map" is a list mapping the SMPL joint index to the\
corresponding HumanIK joint name',
default="animation",
choices=["animation", "json_file"],
),
) -> ModelOutput:
args = self.args
args.num_repetitions = int(num_repetitions)
self.data = get_dataset_loader(
name=self.args.dataset,
batch_size=args.num_repetitions,
num_frames=self.num_frames,
split="test",
hml_mode="text_only",
)
collate_args = [
{
"inp": torch.zeros(self.num_frames),
"tokens": None,
"lengths": self.num_frames,
"text": str(prompt),
}
]
_, model_kwargs = collate(collate_args)
# add CFG scale to batch
if args.guidance_param != 1:
model_kwargs["y"]["scale"] = (
torch.ones(args.num_repetitions, device=dist_util.dev())
* args.guidance_param
)
sample_fn = self.diffusion.p_sample_loop
sample = sample_fn(
self.model,
(
args.num_repetitions,
self.model.njoints,
self.model.nfeats,
self.num_frames,
),
clip_denoised=False,
model_kwargs=model_kwargs,
skip_timesteps=0, # 0 is the default value - i.e. don't skip any step
init_image=None,
progress=True,
dump_steps=None,
noise=None,
const_noise=False,
)
# Recover XYZ *positions* from HumanML3D vector representation
if self.model.data_rep == "hml_vec":
n_joints = 22 if sample.shape[1] == 263 else 21
sample = self.data.dataset.t2m_dataset.inv_transform(
sample.cpu().permute(0, 2, 3, 1)
).float()
sample = recover_from_ric(sample, n_joints)
sample = sample.view(-1, *sample.shape[2:]).permute(0, 2, 3, 1)
rot2xyz_pose_rep = (
"xyz" if self.model.data_rep in ["xyz", "hml_vec"] else self.model.data_rep
)
rot2xyz_mask = (
None
if rot2xyz_pose_rep == "xyz"
else model_kwargs["y"]["mask"]
.reshape(args.num_repetitions, self.num_frames)
.bool()
)
sample = self.model.rot2xyz(
x=sample,
mask=rot2xyz_mask,
pose_rep=rot2xyz_pose_rep,
glob=True,
translation=True,
jointstype="smpl",
vertstrans=True,
betas=None,
beta=0,
glob_rot=None,
get_rotations_back=False,
)
all_motions = sample.cpu().numpy()
if output_format == "json_file":
data_dict = motions2hik(all_motions)
return ModelOutput(json_file=data_dict)
caption = str(prompt)
skeleton = paramUtil.t2m_kinematic_chain
(
sample_print_template,
row_print_template,
all_print_template,
sample_file_template,
row_file_template,
all_file_template,
) = construct_template_variables(args.unconstrained)
rep_files = []
replicate_fnames = []
for rep_i in range(args.num_repetitions):
motion = all_motions[rep_i].transpose(2, 0, 1)[: self.num_frames]
save_file = sample_file_template.format(1, rep_i)
print(sample_print_template.format(caption, 1, rep_i, save_file))
plot_3d_motion(
save_file,
skeleton,
motion,
dataset=args.dataset,
title=caption,
fps=args.fps,
)
# Credit for visualization: https://github.com/EricGuo5513/text-to-motion
rep_files.append(save_file)
replicate_fnames.append(Path(save_file))
return ModelOutput(animation=replicate_fnames)