-
Notifications
You must be signed in to change notification settings - Fork 1
/
dataset.py
670 lines (554 loc) · 29.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
import logging
import os
import os.path as osp
import json
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from utils import seed_worker
import pprint
def load_data(args,
config=None, config_kor=None, config_han=None,
tokenizer=None, tokenizer_kor=None, tokenizer_han=None,
split="train"):
if args.joint:
dataset = JointDataset(args, config_kor, config_han, tokenizer_kor, tokenizer_han, split)
else:
assert args.language in ['korean', 'hanja']
if args.language == 'korean':
dataset = KoreanDataset(args, config, tokenizer, split)
elif args.language == 'hanja':
dataset = HanjaDataset(args, config, tokenizer, split)
if split == "train":
dataloader = DataLoader(dataset,
batch_size=args.train_batch_size,
collate_fn=dataset.collate_fn,
worker_init_fn=seed_worker,
num_workers=args.num_workers,
shuffle=True,
drop_last=True,
pin_memory=True)
elif split == "valid":
dataloader = DataLoader(dataset,
batch_size=args.eval_batch_size,
collate_fn=dataset.collate_fn,
shuffle=False,
drop_last=False,
pin_memory=True)
elif split =="test":
dataloader = DataLoader(dataset,
batch_size=args.test_batch_size,
collate_fn=dataset.collate_fn,
shuffle=False,
drop_last=False)
else:
raise ValueError("Data split must be either train/valid/test.")
return dataloader
class JointDataset(Dataset):
def __init__(self, args, config_kor, config_han, tokenizer_kor, tokenizer_han, split="train"):
self.args = args
self.config_kor = config_kor
self.config_han = config_han
self.tokenizer_kor = tokenizer_kor
self.tokenizer_han = tokenizer_han
self.split = split
self.features = []
if args.add_emb:
self.save_dir = osp.join(args.data_dir, f"joint_add_{args.w_kor_emb}")
else:
self.save_dir = osp.join(args.data_dir, "joint_concat")
self.save_path = osp.join(self.save_dir, f"{args.model_type}+{args.model2_type}_{split}.pt")
os.makedirs(self.save_dir, exist_ok=True)
map_dir = '/'.join(args.data_dir.split('/')[:-1])
with open(osp.join(map_dir, "ner_map.json")) as f:
self.ner_map = json.load(f)
with open(osp.join(map_dir, "label_map.json")) as f:
self.label_map = json.load(f)
self.load_and_cache_examples()
def load_and_cache_examples(self):
if osp.exists(self.save_path):
logging.info(f"Loading features from {self.save_path}")
self.features = torch.load(self.save_path)
return
cls_token_kor = self.tokenizer_kor.cls_token
sep_token_kor = self.tokenizer_kor.sep_token
cls_token_han = self.tokenizer_han.cls_token
sep_token_han = self.tokenizer_han.sep_token
num_special_tokens = 2
num_empty_entity_examples = 0
num_empty_label_examples = 0
num_filtered_labels = 0
logging.info(f"Creating features from {self.args.data_dir}")
rootdir = osp.join(self.args.data_dir, f"{self.split}")
N_data_problems = 0
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
ex = json.load(f)
if len(ex["entity"]) == 0:
num_empty_entity_examples += 1
continue
if len(ex["relation"]) == 0:
num_empty_label_examples += 1
continue
### Tokenize text & cluster entity mentions ###
entities_kor = [] # list of lists clustering same entity mentions
entities_han = []
coref_dict_kor = {} # { coref_type: entity_idx } -> will be used to cluster mentions
coref_dict_han = {}
ent2idx_kor = {} # { info: entity_idx } -> map entity to idx
ent2idx_han = {}
ent_idx_kor = 0 # unique entity idx
ent_idx_han = 0
prev_idx_kor = 1 # skip cls_token idx
prev_idx_han = 1
input_tokens_kor = [cls_token_kor]
input_tokens_han = [cls_token_han]
long_seq = False
for ent in ex["entity"]:
if (ent["kor"]["type"] == "START" or ent["kor"]["text"] == "" or ent["kor"]["text"] == " " or
ent["han"]["type"] == "START" or ent["han"]["text"] == "" or ent["han"]["text"] == " "):
continue
if ent["han"]["coref_type"] != ent["kor"]["coref_type"]:
ent["han"]["coref_type"] = ent["kor"]["coref_type"]
# when tokenizing, make note of subword idxes
prev_text_kor = ex["text"]["kor"][prev_idx_kor:ent["kor"]["start"]]
prev_text_han = ex["text"]["han"][prev_idx_han:ent["han"]["start"]]
prev_tokens_kor = self.tokenizer_kor.tokenize(prev_text_kor)
prev_tokens_han = self.tokenizer_han.tokenize(prev_text_han)
input_tokens_kor += prev_tokens_kor
input_tokens_han += prev_tokens_han
start_kor = len(input_tokens_kor)
start_han = len(input_tokens_han)
ent_text_kor = ex["text"]["kor"][ent["kor"]["start"]:ent["kor"]["end"]]
ent_text_han = ex["text"]["han"][ent["han"]["start"]:ent["han"]["end"]]
ent_tokens_kor = self.tokenizer_kor.tokenize(ent_text_kor)
ent_tokens_han = self.tokenizer_han.tokenize(ent_text_han)
if self.args.mark_entities:
ent_tokens_kor = ["*"] + ent_tokens_kor + ["*"]
ent_tokens_han = ["*"] + ent_tokens_han + ["*"]
input_tokens_kor += ent_tokens_kor
input_tokens_han += ent_tokens_han
end_kor = len(input_tokens_kor)
end_han = len(input_tokens_han)
prev_idx_kor = ent["kor"]["end"]
prev_idx_han = ent["han"]["end"]
if (start_kor > self.args.max_seq_length-num_special_tokens or
end_kor > self.args.max_seq_length-num_special_tokens or
start_han > self.args.max_seq_length-num_special_tokens or
end_han > self.args.max_seq_length-num_special_tokens):
long_seq = True
break
ent_info_kor = (ent["kor"]["text"], ent["kor"]["start"], ent["kor"]["end"])
ent_info_han = (ent["han"]["text"], ent["han"]["start"], ent["han"]["end"])
full_ent_info_kor = (ent["kor"]["text"], ent["kor"]["start"], ent["kor"]["end"], start_kor, end_kor)
full_ent_info_han = (ent["han"]["text"], ent["han"]["start"], ent["han"]["end"], start_han, end_han)
if ent["kor"]["coref_type"]:
if ent["kor"]["coref_type"] in coref_dict_kor:
coref_idx = coref_dict_kor[ent["kor"]["coref_type"]]
ent2idx_kor[ent_info_kor] = coref_idx
entities_kor[coref_idx].append(full_ent_info_kor)
else:
coref_dict_kor[ent["kor"]["coref_type"]] = ent_idx_kor
ent2idx_kor[ent_info_kor] = ent_idx_kor
entities_kor.append([full_ent_info_kor])
ent_idx_kor += 1
else:
ent2idx_kor[ent_info_kor] = ent_idx_kor
entities_kor.append([full_ent_info_kor])
ent_idx_kor += 1
if ent["han"]["coref_type"]:
if ent["han"]["coref_type"] in coref_dict_han:
coref_idx = coref_dict_han[ent["han"]["coref_type"]]
ent2idx_han[ent_info_han] = coref_idx
entities_han[coref_idx].append(full_ent_info_han)
else:
coref_dict_han[ent["han"]["coref_type"]] = ent_idx_han
ent2idx_han[ent_info_han] = ent_idx_han
entities_han.append([full_ent_info_han])
ent_idx_han += 1
else:
ent2idx_han[ent_info_han] = ent_idx_han
entities_han.append([full_ent_info_han])
ent_idx_han += 1
if not long_seq:
remaining_text_kor = ex["text"]["kor"][prev_idx_kor:]
remaining_text_han = ex["text"]["han"][prev_idx_han:]
input_tokens_kor += self.tokenizer_kor.tokenize(remaining_text_kor)
input_tokens_han += self.tokenizer_han.tokenize(remaining_text_han)
input_tokens_kor = input_tokens_kor[:self.args.max_seq_length - 1]
input_tokens_han = input_tokens_han[:self.args.max_seq_length - 1]
input_tokens_kor += [sep_token_kor]
input_tokens_han += [sep_token_han]
input_ids_kor = self.tokenizer_kor.convert_tokens_to_ids(input_tokens_kor)
input_ids_han = self.tokenizer_han.convert_tokens_to_ids(input_tokens_han)
# Pad to max length
input_ids_kor += [self.config_kor.pad_token_id] * (self.args.max_seq_length - len(input_ids_kor))
input_ids_han += [self.config_han.pad_token_id] * (self.args.max_seq_length - len(input_ids_han))
assert len(input_ids_kor) == len(input_ids_han) == self.args.max_seq_length
### entity masks & NERs
ent_pos_kor, ent_pos_han = [], []
for ent in entities_kor:
ent_pos_kor.append([])
for ment in ent:
token_start, token_end = ment[3], ment[4]
ent_pos_kor[-1].append((token_start, token_end))
for ent in entities_han:
ent_pos_han.append([])
for ment in ent:
token_start, token_end = ment[3], ment[4]
ent_pos_han[-1].append((token_start, token_end))
# debug
for ent_k, ent_h in zip(ent_pos_kor, ent_pos_han):
assert len(ent_k) == len(ent_h)
### labels ###
labels = torch.zeros((len(entities_kor), len(entities_kor), self.config_kor.num_labels), dtype=torch.float32)
for relation in ex["relation"]:
s1, o1 = relation["kor"]['subject_entity'], relation["kor"]['object_entity']
s2, o2 = relation["han"]['subject_entity'], relation["han"]['object_entity']
h_idx = ent2idx_kor.get((s1["text"], s1["start"], s1["end"]), None)
t_idx = ent2idx_kor.get((o1["text"], o1["start"], o1["end"]), None)
h_idx2 = ent2idx_han.get((s2["text"], s2["start"], s2["end"]), None)
t_idx2 = ent2idx_han.get((o2["text"], o2["start"], o2["end"]), None)
if h_idx is None or t_idx is None:
num_filtered_labels += 1
continue
r_idx = self.label_map[relation["kor"]["label"]]
labels[h_idx, t_idx, r_idx] = 1
for h in range(len(entities_kor)):
for t in range(len(entities_kor)):
if torch.all(labels[h][t] == 0):
labels[h][t][0] = 1
self.features.append({
"input_ids_kor": input_ids_kor,
"input_ids_han": input_ids_han,
"ent_pos_kor": ent_pos_kor,
"ent_pos_han": ent_pos_han,
"labels": labels,
"entities_kor": entities_kor,
"entities_han": entities_han,
"text_kor": ex["text"]["kor"],
"text_han": ex["text"]["han"]
})
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
logging.info(f"Saving features to {self.save_path}")
torch.save(self.features, self.save_path)
def collate_fn(self, samples):
input_ids_kor = [x["input_ids_kor"] for x in samples]
input_ids_han = [x["input_ids_han"] for x in samples]
ent_pos_kor = [x["ent_pos_kor"] for x in samples]
ent_pos_han = [x["ent_pos_han"] for x in samples]
labels = [x["labels"].view(-1, self.config_kor.num_labels) for x in samples]
input_ids_kor = torch.tensor(input_ids_kor, dtype=torch.long)
input_ids_han = torch.tensor(input_ids_han, dtype=torch.long)
labels = torch.cat(labels, dim=0)
if not self.args.do_analysis:
return {"input_ids_kor": input_ids_kor,
"input_ids_han": input_ids_han,
"ent_pos_kor": ent_pos_kor,
"ent_pos_han": ent_pos_han,
"labels": labels}
elif self.args.do_analysis:
entities_kor = [x["entities_kor"] for x in samples]
entities_han = [x["entities_han"] for x in samples]
text_kor = [x["text_kor"] for x in samples]
text_han = [x["text_han"] for x in samples]
return {"input_ids_kor": input_ids_kor,
"input_ids_han": input_ids_han,
"ent_pos_kor": ent_pos_kor,
"ent_pos_han": ent_pos_han,
"labels": labels,
"entities_kor": entities_kor,
"entities_han": entities_han,
"text_kor": text_kor,
"text_han": text_han
}
def __len__(self):
return len(self.features)
def __getitem__(self, idx):
return self.features[idx]
class KoreanDataset(Dataset):
def __init__(self, args, config, tokenizer, split="train"):
self.args = args
self.config = config
self.tokenizer = tokenizer
self.split = split
self.features = []
self.save_dir = osp.join(args.data_dir, args.language)
self.save_path = osp.join(self.save_dir, f"{args.model_type}_{split}.pt")
os.makedirs(self.save_dir, exist_ok=True)
map_dir = '/'.join(args.data_dir.split('/')[:-1])
with open(osp.join(map_dir, "ner_map.json")) as f:
self.ner_map = json.load(f)
with open(osp.join(map_dir, "label_map.json")) as f:
self.label_map = json.load(f)
self.load_and_cache_examples()
def load_and_cache_examples(self):
if osp.exists(self.save_path):
logging.info(f"Loading features from {self.save_path}")
self.features = torch.load(self.save_path)
return
cls_token = self.tokenizer.cls_token
sep_token = self.tokenizer.sep_token
num_special_tokens = 2
num_empty_entity_examples = 0
num_empty_label_examples = 0
num_filtered_labels = 0
logging.info(f"Creating features from {self.args.data_dir}")
rootdir = osp.join(self.args.data_dir, f"{self.split}")
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
ex = json.load(f)
if len(ex["entity"]) == 0:
num_empty_entity_examples += 1
continue
if len(ex["relation"]) == 0:
num_empty_label_examples += 1
continue
### Tokenize text & cluster entity mentions ###
entities = [] # list of lists clustering same entity mentions
coref_dict = {} # { coref_type: entity_idx } -> will be used to cluster mentions
ent2idx = {} # { info: entity_idx } -> map entity to idx
ent_idx = 0 # unique entity idx
prev_idx = 1 # skip cls_token idx
input_tokens = [cls_token]
long_seq = False
for ent in ex["entity"]:
ent = ent['kor']
if ent["type"] == "START" or ent["text"] == "" or ent["text"] == " ":
continue
# when tokenizing, make note of subword idxes
prev_text = ex["text"]["kor"][prev_idx:ent["start"]]
prev_tokens = self.tokenizer.tokenize(prev_text)
input_tokens += prev_tokens
start = len(input_tokens)
ent_text = ex["text"]["kor"][ent["start"]:ent["end"]]
ent_tokens = self.tokenizer.tokenize(ent_text)
if self.args.mark_entities:
ent_tokens = ["*"] + ent_tokens + ["*"]
input_tokens += ent_tokens
end = len(input_tokens)
prev_idx = ent["end"]
# Skip entity mentions that appear beyond the truncated text
if (start > self.args.max_seq_length-num_special_tokens or
end > self.args.max_seq_length-num_special_tokens):
long_seq = True
break
# this tuple will be used to identify entity
ent_info = (ent["text"], ent["start"], ent["end"], ent["type"])
full_ent_info = (ent["text"], ent["start"], ent["end"], start, end, ent["type"])
if ent["coref_type"]:
if ent["coref_type"] in coref_dict:
coref_idx = coref_dict[ent["coref_type"]]
ent2idx[ent_info] = coref_idx
entities[coref_idx].append(full_ent_info)
else:
coref_dict[ent["coref_type"]] = ent_idx
ent2idx[ent_info] = ent_idx
entities.append([full_ent_info])
ent_idx += 1
else:
ent2idx[ent_info] = ent_idx
entities.append([full_ent_info])
ent_idx += 1
if not long_seq:
remaining_text = ex["text"]["kor"][prev_idx:]
input_tokens += self.tokenizer.tokenize(remaining_text)
input_tokens = input_tokens[:self.args.max_seq_length - 1] # truncation
input_tokens += [sep_token]
input_ids = self.tokenizer.convert_tokens_to_ids(input_tokens)
# Pad to max length to enable sparse attention in bigbird
input_ids += [self.config.pad_token_id] * (self.args.max_seq_length - len(input_ids))
assert len(input_ids) == self.args.max_seq_length
### entity masks & NERs
ent_pos, ent_ner = [], []
for ent in entities:
ent_pos.append([])
# ent_ner.append([])
for ment in ent:
token_start, token_end = ment[3], ment[4]
ent_pos[-1].append((token_start, token_end))
# ent_ner[-1].append(ment[-1])
### labels ###
labels = torch.zeros((len(entities), len(entities), self.config.num_labels), dtype=torch.float32)
for relation in ex["relation"]:
relation = relation['kor']
s, o = relation['subject_entity'], relation['object_entity']
h_idx = ent2idx.get((s["text"], s["start"], s["end"], s["type"]), None)
t_idx = ent2idx.get((o["text"], o["start"], o["end"], o["type"]), None)
if h_idx is None or t_idx is None:
num_filtered_labels += 1
continue
r_idx = self.label_map[relation["label"]]
labels[h_idx, t_idx, r_idx] = 1
for h in range(len(entities)):
for t in range(len(entities)):
if torch.all(labels[h][t] == 0):
labels[h][t][0] = 1
self.features.append({
"input_ids": input_ids,
"ent_pos": ent_pos,
"labels": labels,
})
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
logging.info(f"Saving features to {self.save_path}")
torch.save(self.features, self.save_path)
def collate_fn(self, samples):
input_ids = [x["input_ids"] for x in samples]
ent_pos = [x["ent_pos"] for x in samples]
labels = [x["labels"].view(-1, self.config.num_labels) for x in samples]
input_ids = torch.tensor(input_ids, dtype=torch.long)
labels = torch.cat(labels, dim=0)
return {"input_ids": input_ids,
"ent_pos": ent_pos,
"labels": labels,
}
def __len__(self):
return len(self.features)
def __getitem__(self, idx):
return self.features[idx]
class HanjaDataset(Dataset):
def __init__(self, args, config, tokenizer, split="train"):
self.args = args
self.config = config
self.tokenizer = tokenizer
self.split = split
self.features = []
self.save_dir = osp.join(args.data_dir, args.language)
self.save_path = osp.join(self.save_dir, f"{args.model_type}_{split}.pt")
os.makedirs(self.save_dir, exist_ok=True)
map_dir = '/'.join(args.data_dir.split('/')[:-1])
with open(osp.join(map_dir, "ner_map.json")) as f:
self.ner_map = json.load(f)
with open(osp.join(map_dir, "label_map.json")) as f:
self.label_map = json.load(f)
self.load_and_cache_examples()
def load_and_cache_examples(self):
if osp.exists(self.save_path):
logging.info(f"Loading features from {self.save_path}")
self.features = torch.load(self.save_path)
return
cls_token = self.tokenizer.cls_token
sep_token = self.tokenizer.sep_token
num_special_tokens = 2
num_empty_entity_examples = 0
num_empty_label_examples = 0
num_filtered_labels = 0
logging.info(f"Creating features from {self.args.data_dir}")
rootdir = osp.join(self.args.data_dir, f"{self.split}")
for json_file in tqdm(os.listdir(rootdir), desc="Converting examples to features"):
with open(osp.join(rootdir, json_file), encoding='utf-8') as f:
ex = json.load(f)
if len(ex["entity"]) == 0:
num_empty_entity_examples += 1
continue
if len(ex["relation"]) == 0:
num_empty_label_examples += 1
continue
### Tokenize text & cluster entity mentions ###
entities = [] # list of lists clustering same entity mentions
coref_dict = {} # { coref_type: entity_idx } -> will be used to cluster mentions
ent2idx = {} # { info: entity_idx } -> map entity to idx
ent_idx = 0 # unique entity idx
prev_idx = 1 # skip cls_token idx
input_tokens = [cls_token]
long_seq = False
for ent in ex["entity"]:
ent = ent['han']
if ent["type"] == "START" or ent["text"] == "" or ent["text"] == " ":
continue
# when tokenizing, make note of subword idxes
prev_text = ex["text"]['han'][prev_idx:ent["start"]]
prev_tokens = self.tokenizer.tokenize(prev_text)
input_tokens += prev_tokens
start = len(input_tokens)
ent_text = ex["text"]['han'][ent["start"]:ent["end"]]
ent_tokens = self.tokenizer.tokenize(ent_text)
if self.args.mark_entities:
ent_tokens = ["*"] + ent_tokens + ["*"]
input_tokens += ent_tokens
end = len(input_tokens)
prev_idx = ent["end"]
# Skip entity mentions that appear beyond the truncated text
if (start > self.args.max_seq_length-num_special_tokens or
end > self.args.max_seq_length-num_special_tokens):
long_seq = True
break
# this tuple will be used to identify entity
ent_info = (ent["text"], ent["start"], ent["end"], ent["type"])
full_ent_info = (ent["text"], ent["start"], ent["end"], start, end, ent["type"])
if ent["coref_type"]:
if ent["coref_type"] in coref_dict:
coref_idx = coref_dict[ent["coref_type"]]
ent2idx[ent_info] = coref_idx
entities[coref_idx].append(full_ent_info)
else:
coref_dict[ent["coref_type"]] = ent_idx
ent2idx[ent_info] = ent_idx
entities.append([full_ent_info])
ent_idx += 1
else:
ent2idx[ent_info] = ent_idx
entities.append([full_ent_info])
ent_idx += 1
if not long_seq:
remaining_text = ex["text"]['han'][prev_idx:]
input_tokens += self.tokenizer.tokenize(remaining_text)
input_tokens = input_tokens[:self.args.max_seq_length - 1] # truncation
input_tokens += [sep_token]
input_ids = self.tokenizer.convert_tokens_to_ids(input_tokens)
# Pad to max length to enable sparse attention in bigbird
input_ids += [self.config.pad_token_id] * (self.args.max_seq_length - len(input_ids))
assert len(input_ids) == self.args.max_seq_length
### entity masks & NERs
ent_pos, ent_ner = [], []
for ent in entities:
ent_pos.append([])
for ment in ent:
token_start, token_end = ment[3], ment[4]
ent_pos[-1].append((token_start, token_end))
### labels ###
labels = torch.zeros((len(entities), len(entities), self.config.num_labels), dtype=torch.float32)
for relation in ex["relation"]:
r_idx = self.label_map[relation["label"]]
relation = relation['han']
s, o = relation['subject_entity'], relation['object_entity']
h_idx = ent2idx.get((s["text"], s["start"], s["end"], s["type"]), None)
t_idx = ent2idx.get((o["text"], o["start"], o["end"], o["type"]), None)
if h_idx is None or t_idx is None:
num_filtered_labels += 1
continue
labels[h_idx, t_idx, r_idx] = 1
for h in range(len(entities)):
for t in range(len(entities)):
if torch.all(labels[h][t] == 0):
labels[h][t][0] = 1
self.features.append({
"input_ids": input_ids,
"ent_pos": ent_pos,
"labels": labels,
})
logging.info(f"# of empty entity examples filtered: {num_empty_entity_examples}")
logging.info(f"# of empty label examples filtered: {num_empty_label_examples}")
logging.info(f"# of beyond-truncated-text labels filtered: {num_filtered_labels}")
logging.info(f"Saving features to {self.save_path}")
torch.save(self.features, self.save_path)
def collate_fn(self, samples):
input_ids = [x["input_ids"] for x in samples]
ent_pos = [x["ent_pos"] for x in samples]
labels = [x["labels"].view(-1, self.config.num_labels) for x in samples]
input_ids = torch.tensor(input_ids, dtype=torch.long)
labels = torch.cat(labels, dim=0)
return {"input_ids": input_ids,
"ent_pos": ent_pos,
"labels": labels,
}
def __len__(self):
return len(self.features)
def __getitem__(self, idx):
return self.features[idx]