-
Notifications
You must be signed in to change notification settings - Fork 4
/
engine.py
executable file
·469 lines (406 loc) · 17.2 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# ------------------------------------------------------------------------
# Copyright (c) 2021 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
Train and eval functions used in main.py
"""
import math
import numpy as np
import os
import sys
from typing import Iterable
import torch
import util.misc as motr_utils
import util.p3aformer.p3aformer_misc as p3aformer_utils
from datasets.coco_eval import CocoEvaluator as MotrCocoEvaluator
from datasets.p3aformer_eval import CocoEvaluator as P3AFormerCoCoEvaluator
from datasets.panoptic_eval import PanopticEvaluator
from datasets.data_prefetcher import data_prefetcher, data_dict_to_cuda
def motr_train_one_epoch(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
max_norm: float = 0,
):
model.train()
criterion.train()
metric_logger = motr_utils.MetricLogger(delimiter=" ")
metric_logger.add_meter(
"lr", motr_utils.SmoothedValue(window_size=1, fmt="{value:.6f}")
)
metric_logger.add_meter(
"class_error", motr_utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
)
metric_logger.add_meter(
"grad_norm", motr_utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
)
header = "Epoch: [{}]".format(epoch)
print_freq = 10
prefetcher = data_prefetcher(data_loader, device, prefetch=True)
samples, targets = prefetcher.next()
# for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
for _ in metric_logger.log_every(range(len(data_loader)), print_freq, header):
outputs = model(samples)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(
loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict
)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = motr_utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {
f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
}
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm
)
else:
grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
optimizer.step()
metric_logger.update(
loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled
)
metric_logger.update(class_error=loss_dict_reduced["class_error"])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(grad_norm=grad_total_norm)
samples, targets = prefetcher.next()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def train_one_epoch_mot(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
max_norm: float = 0,
):
model.train()
criterion.train()
metric_logger = motr_utils.MetricLogger(delimiter=" ")
metric_logger.add_meter(
"lr", motr_utils.SmoothedValue(window_size=1, fmt="{value:.6f}")
)
# metric_logger.add_meter('class_error', motr_utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
metric_logger.add_meter(
"grad_norm", motr_utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
)
header = "Epoch: [{}]".format(epoch)
print_freq = 10
# for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
for data_dict in metric_logger.log_every(data_loader, print_freq, header):
data_dict = data_dict_to_cuda(data_dict, device)
outputs = model(data_dict)
loss_dict = criterion(outputs, data_dict)
weight_dict = criterion.weight_dict
losses = sum(
loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict
)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = motr_utils.reduce_dict(loss_dict)
# loss_dict_reduced_unscaled = {f'{k}_unscaled': v
# for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm
)
else:
grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
optimizer.step()
# metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
# metric_logger.update(class_error=loss_dict_reduced['class_error'])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(grad_norm=grad_total_norm)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def motr_evaluate(
model, criterion, postprocessors, data_loader, base_ds, device, output_dir
):
model.eval()
criterion.eval()
metric_logger = motr_utils.MetricLogger(delimiter=" ")
metric_logger.add_meter(
"class_error", motr_utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
)
header = "Test:"
iou_types = tuple(k for k in ("segm", "bbox") if k in postprocessors.keys())
coco_evaluator = MotrCocoEvaluator(base_ds, iou_types)
# coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
panoptic_evaluator = None
if "panoptic" in postprocessors.keys():
panoptic_evaluator = PanopticEvaluator(
data_loader.dataset.ann_file,
data_loader.dataset.ann_folder,
output_dir=os.path.join(output_dir, "panoptic_eval"),
)
for samples, targets in metric_logger.log_every(data_loader, 10, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = motr_utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
# loss_dict_reduced_unscaled = {f'{k}_unscaled': v
# for k, v in loss_dict_reduced.items()}
# metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
# **loss_dict_reduced_scaled,
# **loss_dict_reduced_unscaled)
metric_logger.update(
loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
)
metric_logger.update(class_error=loss_dict_reduced["class_error"])
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors["bbox"](outputs, orig_target_sizes)
if "segm" in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors["segm"](
results, outputs, orig_target_sizes, target_sizes
)
res = {
target["image_id"].item(): output
for target, output in zip(targets, results)
}
if coco_evaluator is not None:
coco_evaluator.update(res)
if panoptic_evaluator is not None:
res_pano = postprocessors["panoptic"](
outputs, target_sizes, orig_target_sizes
)
for i, target in enumerate(targets):
image_id = target["image_id"].item()
file_name = f"{image_id:012d}.png"
res_pano[i]["image_id"] = image_id
res_pano[i]["file_name"] = file_name
panoptic_evaluator.update(res_pano)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
if panoptic_evaluator is not None:
panoptic_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
panoptic_res = None
if panoptic_evaluator is not None:
panoptic_res = panoptic_evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if coco_evaluator is not None:
if "bbox" in postprocessors.keys():
stats["coco_eval_bbox"] = coco_evaluator.coco_eval["bbox"].stats.tolist()
if "segm" in postprocessors.keys():
stats["coco_eval_masks"] = coco_evaluator.coco_eval["segm"].stats.tolist()
if panoptic_res is not None:
stats["PQ_all"] = panoptic_res["All"]
stats["PQ_th"] = panoptic_res["Things"]
stats["PQ_st"] = panoptic_res["Stuff"]
return stats, coco_evaluator
def p3aformer_train_one_epoch(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
max_norm: float = 0,
adaptive_clip: bool = False,
):
model.train()
criterion.train()
metric_logger = p3aformer_utils.MetricLogger(delimiter=" ")
metric_logger.add_meter(
"lr", p3aformer_utils.SmoothedValue(window_size=1, fmt="{value:.6f}")
)
metric_logger.add_meter(
"grad_norm", p3aformer_utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
)
header = "Epoch: [{}]".format(epoch)
print_freq = 50
for idx, ret in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
samples = p3aformer_utils.NestedTensor(ret["image"], ret["pad_mask"])
samples = samples.to(device)
pre_samples = p3aformer_utils.NestedTensor(ret["pre_img"], ret["pre_pad_mask"])
pre_hm = ret["pre_hm"].to(device)
pre_samples = pre_samples.to(device)
targets = {
k: v.to(device)
for k, v in ret.items()
if k != "orig_image"
and k != "image"
and "pad_mask" not in k
and "pre_img" not in k
}
outputs = model(samples, pre_samples=pre_samples, pre_hm=pre_hm)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(
loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict
)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = p3aformer_utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {
f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
}
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
# removed in dense track training
# assert len(weight_dict.keys()) == len(loss_dict_reduced.keys())
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if adaptive_clip:
if max_norm > 0:
p3aformer_utils.clip_grad_norm(model.parameters())
grad_total_norm = p3aformer_utils.get_total_grad_norm(
model.parameters()
)
else:
grad_total_norm = p3aformer_utils.get_total_grad_norm(
model.parameters()
)
else:
if max_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm
)
else:
grad_total_norm = p3aformer_utils.get_total_grad_norm(
model.parameters(), max_norm
)
optimizer.step()
# torch.cuda.empty_cache()
metric_logger.update(
loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled
)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(grad_norm=grad_total_norm)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def p3aformer_evaluate(
model, criterion, postprocessors, data_loader, base_ds, device, output_dir
):
model.eval()
criterion.eval()
metric_logger = p3aformer_utils.MetricLogger(delimiter=" ")
header = "Test:"
iou_types = tuple(k for k in ("segm", "bbox") if k in postprocessors.keys())
coco_evaluator = P3AFormerCoCoEvaluator(base_ds, iou_types)
# set max Dets to 300
coco_evaluator.coco_eval[iou_types[0]].params.maxDets = [300, 300, 300]
for ret in metric_logger.log_every(data_loader, 50, header):
samples = p3aformer_utils.NestedTensor(ret["image"], ret["pad_mask"])
samples = samples.to(device)
pre_samples = p3aformer_utils.NestedTensor(ret["pre_img"], ret["pre_pad_mask"])
pre_hm = ret["pre_hm"].to(device)
pre_samples = pre_samples.to(device)
targets = {
k: v.to(device)
for k, v in ret.items()
if k != "orig_image"
and k != "image"
and "pad_mask" not in k
and "pre_img" not in k
}
outputs = model(samples, pre_samples=pre_samples, pre_hm=pre_hm)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = p3aformer_utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
loss_dict_reduced_unscaled = {
f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
}
metric_logger.update(
loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled,
)
results = postprocessors["bbox"](
outputs, targets["orig_size"], filter_score=False
)
res = {
img_id.item(): output
for img_id, output in zip(targets["image_id"], results)
}
if coco_evaluator is not None:
coco_evaluator.update(res)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if coco_evaluator is not None:
if "bbox" in postprocessors.keys():
stats["coco_eval_bbox"] = coco_evaluator.coco_eval["bbox"].stats.tolist()
return stats, coco_evaluator