-
Notifications
You must be signed in to change notification settings - Fork 3
/
blockBrutal.cpp
executable file
·243 lines (224 loc) · 5.24 KB
/
blockBrutal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include"block.h"
#include<cmath>
#include<iostream>
using namespace std;
EulerAngles::EulerAngles()
{
//do nothing
}
EulerAngles::EulerAngles(double theta0)
//fixed theta0, and free rotation around the same theta
{
double phi0=random()*2.*M_PI/(RAND_MAX+1.0);
double st0=sin(theta0);
sp=st0*sin(phi0);
cp=sqrt(1.-sp*sp);
ct=cos(theta0)/cp;
st=cos(phi0)*st0/cp;
//phi=asin(sp); //no need
//theta=acos(ct);
}
EulerAngles::EulerAngles(double theta0,double phi0)
{
//theta=theta0;
//phi=phi0;
cp=cos(phi0),sp=sin(phi0);
ct=cos(theta0),st=sin(theta0);
}
EulerAngles operator +(EulerAngles a, EulerAngles b)
//transform to the original coordinates, add the rotation
{
EulerAngles o;
o.sp=b.cp*b.ct*a.sp+a.cp*b.sp;
o.cp=sqrt(1-o.sp*o.sp);
o.ct=(a.cp*b.cp*a.ct*b.ct -a.ct*a.sp*b.sp-b.cp*a.st*b.st)/o.cp;
o.st=(a.cp*b.cp*a.st*b.ct -a.st*a.sp*b.sp+b.cp*a.ct*b.st)/o.cp;
//o.phi=asin(o.sp); // no need to convert it back, we only do this after an photon scattered out of the sample
//o.theta=acos(o.ct);
return(o);
}
void EulerAngles::addTo(EulerAngles b)
//transform to the original coordinates, add the rotation
//need to speed up this
{
sp0=b.cp*b.ct*sp+cp*b.sp;
cp0=sqrt(1-sp0*sp0);
ct0=(cp*b.cp*ct*b.ct -ct*sp*b.sp-b.cp*st*b.st)/cp0;
st=(cp*b.cp*st*b.ct -st*sp*b.sp+b.cp*ct*b.st)/cp0;
ct=ct0;
cp=cp0;
sp=sp0;
}
double EulerAngles::get_theta(){
return acos(ct);
}
double EulerAngles::get_phi(){
return asin(sp);
}
Coordinates::Coordinates(){
//do nothing
}
Coordinates::Coordinates(double x0,double y0,double z0)
{
x=x0;
y=y0;
z=z0;
}
Coordinates::Coordinates(EulerAngles a)
{
x=a.ct;//cos(a.theta);
y=a.st;//sin(a.theta);
z=a.cp;//cos(a.phi);
y*=z;
x*=z;
z=a.sp;//sin(a.phi);
}
Coordinates::Coordinates(double theta0,double phi0)
{
x=cos(theta0);
y=sin(theta0);
z=cos(phi0);
y*=z;
x*=z;
z=sin(phi0);
}
double Coordinates::normxy()
{
return(x*x+ y*y);
}
void Coordinates::addTo(Coordinates b)
{
x += b.x;
y += b.y;
z += b.z;
}
Coordinates operator +(Coordinates a,Coordinates b)
{
Coordinates o=a;
o.x += b.x;
o.y += b.y;
o.z += b.z;
return (o);
}
Coordinates operator *(double a,Coordinates b)
{
Coordinates o=b;
o.x = a*b.x;
o.y = a*b.y;
o.z = a*b.z;
return (o);
}
ostream & operator << ( ostream& os,Coordinates b)
{
os<<b.x<<' '<<b.y<<' '<<b.z;
return os;
}
photon::photon()
{
muPE= 1.16 * 2.33; // in cm^-1, PhotoElectric
muC= 0.15 * 2.33; // in cm^-1, compton
muTotal=1.31 * 2.33; // in cm^-1, total
// compton_ratio=(int) ( RAND_MAX*muC/muTotal);
imuTotal=1./muTotal;
sampleL=-2.54*0.25;
R2= (1+1e-8)*sampleL* sampleL;
rstep=fabs(sampleL)/cellDiv;
muPEdr=(muTotal - muC)*rstep; // make the muTotal consistent
muCdr=muTotal*rstep; //muTotal now
}
int photon::init()
{
scattered=0;
r.y= - sampleL- log(random()/(RAND_MAX+1.0)+1e-16)*imuTotal;
if (r.y>=sampleL) return(1);
r.x=r.z=0.;
//r=Coordinates(0.,r0,0.);
//o=EulerAngles(0.,0.);
o.cp=o.ct=1.;
o.sp=o.st=0.;
return(0);
}
int photon::initRef(double phi0)
{
scattered=0;
r0= log((RAND_MAX+1.0)/(random()+(long int) 1))*imuTotal;
cp0=cos(phi0);
r.y=r0*cp0;
if (r.y>=sampleL) return(1);
sp0=sin(phi0);
r.z=r0*sp0;
r.x=0.;
//r=Coordinates(0.,r0*cos(phi0),r0*sin(phi0));
o.ct=1.;o.st=0.;
o.cp=cp0;o.sp=sp0;
//o=EulerAngles(0.,phi0);
return(0);
}
int photon::initPass()
{//Pass through
scattered=0;
r.z=0.;
r.x=sampleL;
r.y=0.;
o.cp=1.;o.sp=0.;
o.ct=1.;o.st=0.;
//o=EulerAngles(0.,phi0);
return(0);
}
int photon::propagatePass(double theta0)
// pass through, brutal force version
{
r0=random()/(RAND_MAX+1.0);
if(r0<muPEdr) return(0);
r.addTo(rstep*Coordinates(o));
if(r0<muCdr) { //compton
scattered++;
o.addTo(EulerAngles(theta0));
}
if (r.normxy() > R2) return(-1); // scattered out of solid sample
return(1);
}
int photon::initRefBuried(double sphi0)
{//Reflectivity, buried interface
scattered=0;
o.sp=sphi0;
o.cp=sqrt(1.-sphi0*sphi0);
r.z=sampleL*sphi0/o.cp;
r.x=sampleL;
r.y=0.;
o.ct=1.;o.st=0.;
//o=EulerAngles(0.,phi0);
return(0);
}
int photon::propagateRef(double theta0)
// scattering process for reflectivity geometry
{
r.addTo(log((RAND_MAX+1.0)/(random()+(long int) 1))*imuTotal*Coordinates(o)); //propagate according to exponential decay
if (r.normxy() > R2 || r.z<0) return(-1); // scattered out of solid sample
// if(random()>compton_ratio) return(0);// not compton scattering
scattered++;
o.addTo(EulerAngles(theta0));
return(1);
}
int photon::propagate(double theta0)
{
r0=random()/(RAND_MAX+1.0);
if (r0<=muPEdr) {// absorbed
return(0);
}
r0 -= muPEdr;
if (r0<=muCdr) {// Compton scattered
scattered++;
o.addTo(EulerAngles(theta0));
}
r.addTo(rstep*Coordinates(o));
if (r.normxy() > R2) return(-1);
return(1);
}
double E_to_l(double en0)
//Energy to wavelength, KeV to angstrom
{
double e=1.602176e-19, h=6.626069e-34, c=2.997925e8;
return h*c/e*1.e7/en0;
}
//