Skip to content

dydjw9/Efficient_SAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Code for “Efficient Sharpness-aware Minimization for Improved Training of Neural Networks”, which has been accepted by ICLR 2022.

Requisite

This code is implemented in PyTorch, and we have tested the code under the following environment settings:

  • python = 3.8.8
  • torch = 1.8.0
  • torchvision = 0.9.0

What is in this repository

Codes for our ESAM on CIFAR10/CIFAR100 datasets.

How to use it

from utils.layer_dp_sam import ESAM
base_optimizer = torch.optim.SGD(model.parameters(),lr=args.learning_rate,momentum=0.9,weight_decay=args.weight_decay)
optimizer = ESAM(paras, base_optimizer, rho=args.rho, weight_dropout=args.weight_dropout,adaptive=args.isASAM,nograd_cutoff=args.nograd_cutoff,opt_dropout = args.opt_dropout,temperature=args.temperature)

--beta the SWP hyperparameter

--gamma the SDS hyperparameter

During training loss_fct should have reduction="none", to return instance-wise losses. defined_backward is the function used for DDP and mixed precision backward

loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
def defined_backward():
    if args.fp16:
    with amp.scale_loss(loss, optimizer0) as scaled_loss:
        scaled_loss.backward()
    else:
        loss.backward()

paras = [inputs,targets,loss_fct,model,defined_backward]
optimizer.paras = paras
optimizer.step()
predictions_logits,loss = optimizer.returnthings

Example

bash run.sh

Reference Code

[1] SAM

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published