-
Notifications
You must be signed in to change notification settings - Fork 1
/
visualize.py
533 lines (441 loc) · 22.5 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# modified from https://github.com/raoyongming/DynamicViT and https://github.com/facebookresearch/deit
import argparse
import os
from pathlib import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision import utils as vutils
import utils
from deit.datasets import build_dataset2, get_post_process
from timm.models import create_model
from timm.optim import create_optimizer
from timm.scheduler import create_scheduler
from timm.utils import NativeScaler
from timm.utils import accuracy, ModelEma
from deit.models_deit import lf_deit_small
def get_transform(input_size):
t = []
resize_im = (input_size != 224)
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
else:
t.append(transforms.ToTensor())
return transforms.Compose(t)
def get_keep_indices(decisions):
keep_indices = []
for i in range(3):
if i == 0:
keep_indices.append(decisions[i])
else:
keep_indices.append(keep_indices[-1][decisions[i]])
return keep_indices
def gen_masked_tokens(tokens, indices, alpha=0.3):
indices = [i for i in range(196) if i not in indices]
tokens = tokens.copy()
tokens[indices] = alpha * tokens[indices] + (1 - alpha) * 255
return tokens
def recover_image(tokens):
# image: (C, 196, 16, 16)
image = tokens.reshape(14, 14, 16, 16, 3).swapaxes(1, 2).reshape(224, 224, 3)
return image
def gen_visualization(image, keep_indices):
# keep_indices = get_keep_indices(decisions)
image_tokens = image.reshape(14, 16, 14, 16, 3).swapaxes(1, 2).reshape(196, 16, 16, 3)
viz = recover_image(gen_masked_tokens(image_tokens, keep_indices))
return viz
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
# Model parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
help='Name of teacher model to train (default: "regnety_160"')
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='./test_img/', help='path where to save')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_false', help='Perform evaluation only')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--excel_filename', type=str, default='attention_matrix_cls', help='filename of saving excel')
# visualization
parser.add_argument('--img-path', default='', type=str,
help='path to images to be visualized. Set '' to visualize batch images in imagenet val.')
parser.add_argument('--save-name', default='', type=str,
help='name to save when visualizing a single image. Set '' to save name as the original image.')
parser.add_argument('--layer-wise-prune', action='store_true',
help='set true when visualize a model trained without layer to stage training strategy')
return parser
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
def unnormalize(input_tensor):
return (input_tensor * IMAGENET_DEFAULT_STD) + IMAGENET_DEFAULT_MEAN
def save_image_tensor(input_tensor: torch.Tensor, filename):
"""
"""
assert ((len(input_tensor.shape) == 4 and input_tensor.shape[0] == 1) or len(input_tensor.shape) == 3)
input_tensor = input_tensor.clone().detach()
input_tensor = input_tensor.to(torch.device('cpu'))
vutils.save_image(input_tensor, filename)
@torch.no_grad()
def visualize_single_img(img_input, model, device, transform, post_process, save_name):
model.eval()
# img: 1, 3, H, W
image_raw = transform(img_input)
save_image_tensor(image_raw, Path(args.output_dir, '{}.jpg'.format(save_name)))
images = post_process(image_raw)
images = images.unsqueeze(0)
images = images.to(device, non_blocking=True)
print(images.shape)
images = F.interpolate(images, (224, 224), mode='bilinear', align_corners=True)
# input
images_list = []
resized_img = F.interpolate(images, (112, 112), mode='bilinear', align_corners=True)
images_list.append(resized_img)
images_list.append(images)
# compute output
with torch.cuda.amp.autocast():
output = model(images_list)
vis_dict = model.get_vis_dict()
image_raw = image_raw * 255
image_raw = image_raw.squeeze(0).permute(1, 2, 0).cpu().numpy()
for k in vis_dict:
keep_indices = vis_dict[k]
viz = gen_visualization(image_raw, keep_indices)
viz = torch.from_numpy(viz).permute(2, 0, 1)
viz = viz / 255
save_image_tensor(viz,
Path(args.output_dir, '{}_{}.jpg'.format(save_name, k)))
print("Visualization finished")
@torch.no_grad()
def visualize(data_loader, model, device, post_process):
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
# set stage_wise_prune = True if the trained model is under layer-to-stage training strategy
model.stage_wise_prune = not args.layer_wise_prune
model.informative_selection = True
threshold = 0.7 # the exit threshold of location stage
all_index = 0
for images_raw_full, target_full in metric_logger.log_every(data_loader, 10, header):
B = images_raw_full.shape[0]
for index in range(B):
all_index += 1
images_raw = images_raw_full[index:index + 1]
target = target_full[index:index + 1]
assert images_raw.shape[0] == 1
images = post_process(images_raw)
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# input
images_list = []
resized_img = F.interpolate(images, (112, 112), mode='bilinear', align_corners=True)
images_list.append(resized_img)
images_list.append(images)
# compute output
with torch.cuda.amp.autocast():
output = model(images_list)
if nn.functional.softmax(output[0]).max() > threshold:
output = output[0]
exit_stage = "location"
else:
output = output[1]
exit_stage = "focus"
acc1, acc5 = accuracy(output, target, topk=(1, 5))
if acc1 == 0:
judger = 'wrong'
elif acc1 == 100:
judger = 'right'
else:
raise ValueError('xxxx')
if exit_stage == "location":
name = 'label{}_{}_location_index{}.jpg'.format(str(target.item()), judger, all_index)
save_image_tensor(images_raw, Path(args.output_dir, name))
continue
informative_index = model.get_vis_data()
images_raw = images_raw * 255
images_raw = images_raw.squeeze(0).permute(1, 2, 0).cpu().numpy()
keep_indices = informative_index.tolist()[0]
viz = gen_visualization(images_raw, keep_indices)
viz = torch.from_numpy(viz).permute(2, 0, 1)
viz = viz / 255
name = 'label{}_{}_{}_index{}.jpg'.format(
str(target.item()), judger, exit_stage, all_index)
save_image_tensor(viz, Path(args.output_dir, name))
batch_size = images.shape[0]
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
print("Visualization finished")
# gather the stats from all processes
metric_logger.synchronize_between_processes()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def vis_single(args):
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
transform = get_transform(input_size=224) # set input_size to other value if the test image is not 224*224
post_process = get_post_process()
print("Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
num_classes=1000,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
)
model.to(device)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
img_input = Image.open(args.img_path)
if args.save_name == '':
save_name = os.path.basename(args.img_path).split('.')[0]
else:
save_name = args.save_name
if args.eval:
test_stats = visualize_single_img(img_input, model, device, transform, post_process, save_name=save_name)
return
def vis_batch(args):
utils.init_distributed_mode(args)
print(args)
if args.distillation_type != 'none' and args.finetune and not args.eval:
raise NotImplementedError("Finetuning with distillation not yet supported")
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
dataset_val, args.nb_classes = build_dataset2(is_train=False, args=args)
post_process = get_post_process()
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True)
else:
sampler_val = torch.utils.data.RandomSampler(dataset_val)
else:
sampler_val = torch.utils.data.RandomSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
print("Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=None,
)
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
if args.distillation_type != 'none':
assert args.teacher_path, 'need to specify teacher-path when using distillation'
print("Creating teacher model: {args.teacher_model}")
teacher_model = create_model(
args.teacher_model,
pretrained=False,
num_classes=args.nb_classes,
global_pool='avg',
)
if args.teacher_path.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.teacher_path, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.teacher_path, map_location='cpu')
teacher_model.load_state_dict(checkpoint['model'])
teacher_model.to(device)
teacher_model.eval()
# wrap the criterion in our custom DistillationLoss, which
# just dispatches to the original criterion if args.distillation_type is 'none'
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.model_ema:
utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
visualize(data_loader_val, model, device, post_process=post_process)
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
args.eval = True
if args.img_path == '':
# To visualize batch images of imagenet val, please run this:
vis_batch(args)
else:
# To visualize a single image, please run this:
vis_single(args)