mirrored from git://git.sv.gnu.org/emacs.git
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
solar.el
1061 lines (972 loc) · 43.4 KB
/
solar.el
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
;;; solar.el --- calendar functions for solar events -*- lexical-binding:t -*-
;; Copyright (C) 1992-1993, 1995, 1997, 2001-2024 Free Software
;; Foundation, Inc.
;; Author: Edward M. Reingold <reingold@cs.uiuc.edu>
;; Denis B. Roegel <Denis.Roegel@loria.fr>
;; Maintainer: emacs-devel@gnu.org
;; Keywords: calendar
;; Human-Keywords: sunrise, sunset, equinox, solstice, calendar, diary, holidays
;; Package: calendar
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; See calendar.el. This file implements features that deal with
;; times of day, sunrise/sunset, and equinoxes/solstices.
;; Based on the ``Almanac for Computers 1984,'' prepared by the Nautical
;; Almanac Office, United States Naval Observatory, Washington, 1984, on
;; ``Astronomical Formulae for Calculators,'' 3rd ed., by Jean Meeus,
;; Willmann-Bell, Inc., 1985, on ``Astronomical Algorithms'' by Jean Meeus,
;; Willmann-Bell, Inc., 1991, and on ``Planetary Programs and Tables from
;; -4000 to +2800'' by Pierre Bretagnon and Jean-Louis Simon, Willmann-Bell,
;; Inc., 1986.
;;
;; Accuracy:
;; 1. Sunrise/sunset times will be accurate to the minute for years
;; 1951--2050. For other years the times will be within +/- 2 minutes.
;;
;; 2. Equinox/solstice times will be accurate to the minute for years
;; 1951--2050. For other years the times will be within +/- 1 minute.
;;; Code:
(require 'calendar)
(require 'cal-dst)
;; calendar-astro-to-absolute and v versa are cal-autoloads.
;;;(require 'cal-julian)
(defcustom calendar-time-display-form
'(12-hours ":" minutes am-pm
(if time-zone " (") time-zone (if time-zone ")"))
"The pseudo-pattern that governs the way a time of day is formatted.
A pseudo-pattern is a list of expressions that can involve the keywords
`12-hours', `24-hours', and `minutes', all numbers in string form,
and `am-pm' and `time-zone', both alphabetic strings.
For example, the form
(24-hours \":\" minutes
(if time-zone \" (\") time-zone (if time-zone \")\"))
would give military-style times like \"21:07 (UTC)\"."
:type 'sexp
:risky t
:group 'calendar)
(defcustom calendar-latitude nil
"Latitude of `calendar-location-name' in degrees.
The value can be either a decimal fraction (one place of accuracy is
sufficient), + north, - south, such as 40.7 for New York City, or the value
can be a vector [degrees minutes north/south] such as [40 50 north] for New
York City.
This variable should be set in `site-start'.el."
:type '(choice (const nil)
(number :tag "Exact")
(vector :value [0 0 north]
(integer :tag "Degrees")
(integer :tag "Minutes")
(choice :tag "Position"
(const north)
(const south))))
:group 'calendar)
(defcustom calendar-longitude nil
"Longitude of `calendar-location-name' in degrees.
The value can be either a decimal fraction (one place of accuracy is
sufficient), + east, - west, such as -73.9 for New York City, or the value
can be a vector [degrees minutes east/west] such as [73 55 west] for New
York City.
This variable should be set in `site-start'.el."
:type '(choice (const nil)
(number :tag "Exact")
(vector :value [0 0 west]
(integer :tag "Degrees")
(integer :tag "Minutes")
(choice :tag "Position"
(const east)
(const west))))
:group 'calendar)
(defcustom calendar-location-name
'(let ((float-output-format "%.1f"))
(format "%s%s, %s%s"
(if (numberp calendar-latitude)
(abs calendar-latitude)
(+ (aref calendar-latitude 0)
(/ (aref calendar-latitude 1) 60.0)))
(if (numberp calendar-latitude)
(if (> calendar-latitude 0) "N" "S")
(if (eq (aref calendar-latitude 2) 'north) "N" "S"))
(if (numberp calendar-longitude)
(abs calendar-longitude)
(+ (aref calendar-longitude 0)
(/ (aref calendar-longitude 1) 60.0)))
(if (numberp calendar-longitude)
(if (> calendar-longitude 0) "E" "W")
(if (eq (aref calendar-longitude 2) 'east) "E" "W"))))
"Expression evaluating to the name of the calendar location.
For example, \"New York City\". The default value is just the
variable `calendar-latitude' paired with the variable `calendar-longitude'.
This variable should be set in `site-start'.el."
:type 'sexp
:risky t
:group 'calendar)
(defcustom solar-error 0.5
"Tolerance (in minutes) for sunrise/sunset calculations.
A larger value makes the calculations for sunrise/sunset faster, but less
accurate. The default is half a minute (30 seconds), so that sunrise/sunset
times will be correct to the minute.
It is useless to set the value smaller than 4*delta, where delta is the
accuracy in the longitude of the sun (given by the function
`solar-ecliptic-coordinates') in degrees since (delta/360) x (86400/60) = 4 x
delta. At present, delta = 0.01 degrees, so the value of the variable
`solar-error' should be at least 0.04 minutes (about 2.5 seconds)."
:type 'number
:group 'calendar)
(defcustom solar-n-hemi-seasons
'("Vernal Equinox" "Summer Solstice" "Autumnal Equinox" "Winter Solstice")
"List of season changes for the northern hemisphere."
:type '(list
(string :tag "Vernal Equinox")
(string :tag "Summer Solstice")
(string :tag "Autumnal Equinox")
(string :tag "Winter Solstice"))
:group 'calendar)
(defcustom solar-s-hemi-seasons
'("Autumnal Equinox" "Winter Solstice" "Vernal Equinox" "Summer Solstice")
"List of season changes for the southern hemisphere."
:type '(list
(string :tag "Autumnal Equinox")
(string :tag "Winter Solstice")
(string :tag "Vernal Equinox")
(string :tag "Summer Solstice"))
:group 'calendar)
;;; End of user options.
(defvar solar-sidereal-time-greenwich-midnight nil
"Sidereal time at Greenwich at midnight (Universal Time).")
(defvar solar-northern-spring-or-summer-season nil
"Non-nil if northern spring or summer and nil otherwise.
Needed for polar areas, in order to know whether the day lasts 0 or 24 hours.")
(defsubst calendar-latitude ()
"Ensure the variable `calendar-latitude' is a signed decimal fraction."
(if (numberp calendar-latitude)
calendar-latitude
(let ((lat (+ (aref calendar-latitude 0)
(/ (aref calendar-latitude 1) 60.0))))
(if (eq (aref calendar-latitude 2) 'north)
lat
(- lat)))))
(defsubst calendar-longitude ()
"Ensure the variable `calendar-longitude' is a signed decimal fraction."
(if (numberp calendar-longitude)
calendar-longitude
(let ((long (+ (aref calendar-longitude 0)
(/ (aref calendar-longitude 1) 60.0))))
(if (eq (aref calendar-longitude 2) 'east)
long
(- long)))))
(defun solar-get-number (prompt)
"Return a number from the minibuffer, prompting with PROMPT.
Returns nil if nothing was entered."
(let ((x (read-string prompt "")))
(unless (string-equal x "")
(string-to-number x))))
(defun solar-setup ()
"Prompt for `calendar-longitude', `calendar-latitude', `calendar-time-zone'."
(or calendar-longitude
(setq calendar-longitude
(solar-get-number
"Enter longitude (decimal fraction; + east, - west): ")))
(or calendar-latitude
(setq calendar-latitude
(solar-get-number
"Enter latitude (decimal fraction; + north, - south): ")))
(or calendar-time-zone
(setq calendar-time-zone
(solar-get-number
"Enter difference from Coordinated Universal Time (in minutes): ")
)))
(defun solar-sin-degrees (x)
"Return sin of X degrees."
(sin (degrees-to-radians (mod x 360.0))))
(defun solar-cosine-degrees (x)
"Return cosine of X degrees."
(cos (degrees-to-radians (mod x 360.0))))
(defun solar-tangent-degrees (x)
"Return tangent of X degrees."
(tan (degrees-to-radians (mod x 360.0))))
(defun solar-xy-to-quadrant (x y)
"Determine the quadrant of the point X, Y."
(if (> x 0)
(if (> y 0) 1 4)
(if (> y 0) 2 3)))
(defun solar-degrees-to-quadrant (angle)
"Determine the quadrant of ANGLE degrees."
(1+ (floor (mod angle 360) 90)))
(defun solar-arctan (x quad)
"Arctangent of X in quadrant QUAD."
(let ((deg (radians-to-degrees (atan x))))
(cond ((= quad 2) (+ deg 180))
((= quad 3) (+ deg 180))
((= quad 4) (+ deg 360))
(t deg))))
(defun solar-atn2 (x y)
"Arctangent of point X, Y."
(if (zerop x)
(if (> y 0) 90 270)
(solar-arctan (/ y x) (solar-xy-to-quadrant x y))))
(defun solar-arccos (x)
"Arccosine of X."
(let ((y (sqrt (- 1 (* x x)))))
(solar-atn2 x y)))
(defun solar-arcsin (y)
"Arcsin of Y."
(let ((x (sqrt (- 1 (* y y)))))
(solar-atn2 x y)))
(defsubst solar-degrees-to-hours (degrees)
"Convert DEGREES to hours."
(/ degrees 15.0))
(defsubst solar-hours-to-days (hour)
"Convert HOUR to decimal fraction of a day."
(/ hour 24.0))
(defun solar-right-ascension (longitude obliquity)
"Right ascension of the sun, in hours, given LONGITUDE and OBLIQUITY.
Both arguments are in degrees."
(solar-degrees-to-hours
(solar-arctan
(* (solar-cosine-degrees obliquity) (solar-tangent-degrees longitude))
(solar-degrees-to-quadrant longitude))))
(defun solar-declination (longitude obliquity)
"Declination of the sun, in degrees, given LONGITUDE and OBLIQUITY.
Both arguments are in degrees."
(solar-arcsin
(* (solar-sin-degrees obliquity)
(solar-sin-degrees longitude))))
(defun solar-ecliptic-coordinates (time sunrise-flag)
"Return solar longitude, ecliptic inclination, equation of time, nutation.
Values are for TIME in Julian centuries of Ephemeris Time since
January 1st, 2000, at 12 ET. Longitude and inclination are in
degrees, equation of time in hours, and nutation in seconds of longitude.
If SUNRISE-FLAG is non-nil, only calculate longitude and inclination."
(let* ((l (+ 280.46645
(* 36000.76983 time)
(* 0.0003032 time time))) ; sun mean longitude
(ml (+ 218.3165
(* 481267.8813 time))) ; moon mean longitude
(m (+ 357.52910
(* 35999.05030 time)
(* -0.0001559 time time)
(* -0.00000048 time time time))) ; sun mean anomaly
(i (+ 23.43929111 (* -0.013004167 time)
(* -0.00000016389 time time)
(* 0.0000005036 time time time))) ; mean inclination
(c (+ (* (+ 1.914600
(* -0.004817 time)
(* -0.000014 time time))
(solar-sin-degrees m))
(* (+ 0.019993 (* -0.000101 time))
(solar-sin-degrees (* 2 m)))
(* 0.000290
(solar-sin-degrees (* 3 m))))) ; center equation
(L (+ l c)) ; total longitude
;; Longitude of moon's ascending node on the ecliptic.
(omega (+ 125.04
(* -1934.136 time)))
;; nut = nutation in longitude, measured in seconds of angle.
(nut (unless sunrise-flag
(+ (* -17.20 (solar-sin-degrees omega))
(* -1.32 (solar-sin-degrees (* 2 l)))
(* -0.23 (solar-sin-degrees (* 2 ml)))
(* 0.21 (solar-sin-degrees (* 2 omega))))))
(ecc (unless sunrise-flag ; eccentricity of earth's orbit
(+ 0.016708617
(* -0.000042037 time)
(* -0.0000001236 time time))))
(app (+ L ; apparent longitude of sun
-0.00569
(* -0.00478
(solar-sin-degrees omega))))
(y (unless sunrise-flag
(* (solar-tangent-degrees (/ i 2))
(solar-tangent-degrees (/ i 2)))))
;; Equation of time, in hours.
(time-eq (unless sunrise-flag
(/ (* 12 (+ (* y (solar-sin-degrees (* 2 l)))
(* -2 ecc (solar-sin-degrees m))
(* 4 ecc y (solar-sin-degrees m)
(solar-cosine-degrees (* 2 l)))
(* -0.5 y y (solar-sin-degrees (* 4 l)))
(* -1.25 ecc ecc (solar-sin-degrees (* 2 m)))))
float-pi))))
(list app i time-eq nut)))
(defun solar-ephemeris-correction (year)
"Ephemeris time minus Universal Time during Gregorian YEAR.
Result is in days. For the years 1800-1987, the maximum error is
1.9 seconds. For the other years, the maximum error is about 30 seconds."
(cond ((and (<= 1988 year) (< year 2020))
(/ (+ year -2000 67.0) 60.0 60.0 24.0))
((and (<= 1900 year) (< year 1988))
(let* ((theta (/ (- (calendar-astro-from-absolute
(calendar-absolute-from-gregorian
(list 7 1 year)))
(calendar-astro-from-absolute
(calendar-absolute-from-gregorian
'(1 1 1900))))
36525.0))
(theta2 (* theta theta))
(theta3 (* theta2 theta))
(theta4 (* theta2 theta2))
(theta5 (* theta3 theta2)))
(+ -0.00002
(* 0.000297 theta)
(* 0.025184 theta2)
(* -0.181133 theta3)
(* 0.553040 theta4)
(* -0.861938 theta5)
(* 0.677066 theta3 theta3)
(* -0.212591 theta4 theta3))))
((and (<= 1800 year) (< year 1900))
(let* ((theta (/ (- (calendar-astro-from-absolute
(calendar-absolute-from-gregorian
(list 7 1 year)))
(calendar-astro-from-absolute
(calendar-absolute-from-gregorian
'(1 1 1900))))
36525.0))
(theta2 (* theta theta))
(theta3 (* theta2 theta))
(theta4 (* theta2 theta2))
(theta5 (* theta3 theta2)))
(+ -0.000009
(* 0.003844 theta)
(* 0.083563 theta2)
(* 0.865736 theta3)
(* 4.867575 theta4)
(* 15.845535 theta5)
(* 31.332267 theta3 theta3)
(* 38.291999 theta4 theta3)
(* 28.316289 theta4 theta4)
(* 11.636204 theta4 theta5)
(* 2.043794 theta5 theta5))))
((and (<= 1620 year) (< year 1800))
(let ((x (/ (- year 1600) 10.0)))
(/ (+ (* 2.19167 x x) (* -40.675 x) 196.58333) 60.0 60.0 24.0)))
(t (let* ((tmp (- (calendar-astro-from-absolute
(calendar-absolute-from-gregorian
(list 1 1 year)))
2382148))
(second (- (/ (* tmp tmp) 41048480.0) 15)))
(/ second 60.0 60.0 24.0)))))
(defun solar-ephemeris-time (time)
"Ephemeris Time at moment TIME.
TIME is a pair with the first component being the number of Julian centuries
elapsed at 0 Universal Time, and the second component counting Universal Time
hours. For instance, the pair corresponding to November 28, 1995 at 16 UT is
\(-0.040945 16), -0.040945 being the number of Julian centuries elapsed between
Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT.
Result is in Julian centuries of ephemeris time."
(let* ((t0 (car time))
(ut (cadr time))
(t1 (+ t0 (/ (/ ut 24.0) 36525)))
(y (+ 2000 (* 100 t1)))
(dt (* 86400 (solar-ephemeris-correction (floor y)))))
(+ t1 (/ (/ dt 86400) 36525))))
(defun solar-equatorial-coordinates (time sunrise-flag)
"Right ascension (in hours) and declination (in degrees) of the sun at TIME.
TIME is a pair with the first component being the number of
Julian centuries elapsed at 0 Universal Time, and the second
component counting Universal Time hours. For instance, the pair
corresponding to November 28, 1995 at 16 UT is (-0.040945 16),
-0.040945 being the number of Julian centuries elapsed between
Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT. SUNRISE-FLAG is passed
to `solar-ecliptic-coordinates'."
(let ((ec (solar-ecliptic-coordinates (solar-ephemeris-time time)
sunrise-flag)))
(list (solar-right-ascension (car ec) (cadr ec))
(solar-declination (car ec) (cadr ec)))))
(defun solar-horizontal-coordinates (time latitude longitude sunrise-flag)
"Azimuth and height of the sun at TIME, LATITUDE, and LONGITUDE.
TIME is a pair with the first component being the number of
Julian centuries elapsed at 0 Universal Time, and the second
component counting Universal Time hours. For instance, the pair
corresponding to November 28, 1995 at 16 UT is (-0.040945 16),
-0.040945 being the number of Julian centuries elapsed between
Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT. SUNRISE-FLAG
is passed to `solar-ecliptic-coordinates'. Azimuth and
height (between -180 and 180) are both in degrees."
(let* ((ut (cadr time))
(ec (solar-equatorial-coordinates time sunrise-flag))
(st (+ solar-sidereal-time-greenwich-midnight
(* ut 1.00273790935)))
;; Hour angle (in degrees).
(ah (- (* st 15) (* 15 (car ec)) (* -1 longitude)))
(de (cadr ec))
(azimuth (solar-atn2 (- (* (solar-cosine-degrees ah)
(solar-sin-degrees latitude))
(* (solar-tangent-degrees de)
(solar-cosine-degrees latitude)))
(solar-sin-degrees ah)))
(height (solar-arcsin
(+ (* (solar-sin-degrees latitude) (solar-sin-degrees de))
(* (solar-cosine-degrees latitude)
(solar-cosine-degrees de)
(solar-cosine-degrees ah))))))
(if (> height 180) (setq height (- height 360)))
(list azimuth height)))
(defun solar-moment (direction latitude longitude time height)
"Sunrise/sunset at location.
Sunrise if DIRECTION =-1 or sunset if =1 at LATITUDE, LONGITUDE, with midday
being TIME.
TIME is a pair with the first component being the number of Julian centuries
elapsed at 0 Universal Time, and the second component counting Universal Time
hours. For instance, the pair corresponding to November 28, 1995 at 16 UT is
\(-0.040945 16), -0.040945 being the number of Julian centuries elapsed between
Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT.
HEIGHT is the angle the center of the sun has over the horizon for the contact
we are trying to find. For sunrise and sunset, it is usually -0.61 degrees,
accounting for the edge of the sun being on the horizon.
Uses binary search."
(let* ((ut (cadr time))
(possible t) ; we assume that rise or set are possible
(utmin (+ ut (* direction 12.0)))
(utmax ut) ; the time searched is between utmin and utmax
;; utmin and utmax are in hours.
(utmoment-old utmin) ; rise or set approximation
(utmoment utmax) ; rise or set approximation
(hut 0) ; sun height at utmoment
(t0 (car time))
(hmin (cadr (solar-horizontal-coordinates (list t0 utmin)
latitude longitude t)))
(hmax (cadr (solar-horizontal-coordinates (list t0 utmax)
latitude longitude t))))
;; -0.61 degrees is the height of the middle of the sun, when it
;; rises or sets.
(if (< hmin height)
(if (> hmax height)
(while ;;; (< i 20) ; we perform a simple dichotomy
;;; (> (abs (- hut height)) epsilon)
(>= (abs (- utmoment utmoment-old))
(/ solar-error 60))
(setq utmoment-old utmoment
utmoment (/ (+ utmin utmax) 2)
hut (cadr (solar-horizontal-coordinates
(list t0 utmoment) latitude longitude t)))
(if (< hut height) (setq utmin utmoment))
(if (> hut height) (setq utmax utmoment)))
(setq possible nil)) ; the sun never rises
(setq possible nil)) ; the sun never sets
(if possible utmoment)))
(defun solar-sunrise-and-sunset (time latitude longitude height)
"Sunrise, sunset and length of day.
Parameters are the midday TIME and the LATITUDE, LONGITUDE of the location.
TIME is a pair with the first component being the number of Julian centuries
elapsed at 0 Universal Time, and the second component counting Universal Time
hours. For instance, the pair corresponding to November 28, 1995 at 16 UT is
\(-0.040945 16), -0.040945 being the number of Julian centuries elapsed between
Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT.
HEIGHT is the angle the center of the sun has over the horizon for the contact
we are trying to find. For sunrise and sunset, it is usually -0.61 degrees,
accounting for the edge of the sun being on the horizon.
Coordinates are included because this function is called with latitude=1
degrees to find out if polar regions have 24 hours of sun or only night."
(let ((rise-time (solar-moment -1 latitude longitude time height))
(set-time (solar-moment 1 latitude longitude time height))
day-length)
(if (not (and rise-time set-time))
(if (or (and (> latitude 0)
solar-northern-spring-or-summer-season)
(and (< latitude 0)
(not solar-northern-spring-or-summer-season)))
(setq day-length 24)
(setq day-length 0))
(setq day-length (- set-time rise-time)))
(list (if rise-time (+ rise-time (/ calendar-time-zone 60.0)) nil)
(if set-time (+ set-time (/ calendar-time-zone 60.0)) nil)
day-length)))
(defun solar-time-string (time time-zone)
"Printable form for decimal fraction TIME in TIME-ZONE.
Format used is given by `calendar-time-display-form'."
(let* ((time (round (* 60 time)))
(24-hours (/ time 60)))
(calendar-dlet
((time-zone time-zone)
(minutes (format "%02d" (% time 60)))
(12-hours (format "%d" (1+ (% (+ 24-hours 11) 12))))
(am-pm (if (>= 24-hours 12) "pm" "am"))
(24-hours (format "%02d" 24-hours)))
(mapconcat #'eval calendar-time-display-form ""))))
(defun solar-daylight (time)
"Printable form for TIME expressed in hours."
(format "%d:%02d"
(floor time)
(floor (* 60 (- time (floor time))))))
(defun solar-julian-ut-centuries (date)
"Number of Julian centuries since 1 Jan, 2000 at noon UT for Gregorian DATE."
(/ (- (calendar-absolute-from-gregorian date)
(calendar-absolute-from-gregorian '(1 1.5 2000)))
36525.0))
(defun solar-date-to-et (date ut)
"Ephemeris Time at Gregorian DATE at Universal Time UT (in hours).
Expressed in Julian centuries of Ephemeris Time."
(solar-ephemeris-time (list (solar-julian-ut-centuries date) ut)))
(defun solar-time-equation (date ut)
"Equation of time expressed in hours at Gregorian DATE at Universal time UT."
(nth 2 (solar-ecliptic-coordinates (solar-date-to-et date ut) nil)))
(defun solar-exact-local-noon (date)
"Date and Universal Time of local noon at *local date* DATE.
The date may be different from the one asked for, but it will be the right
local date. The second component of date should be an integer."
(let* ((nd date)
(ut (- 12.0 (/ (calendar-longitude) 15)))
(te (solar-time-equation date ut)))
(setq ut (- ut te))
(if (>= ut 24)
(setq nd (list (car date) (1+ (cadr date))
(nth 2 date))
ut (- ut 24)))
(if (< ut 0)
(setq nd (list (car date) (1- (cadr date))
(nth 2 date))
ut (+ ut 24)))
(setq nd (calendar-gregorian-from-absolute ; date standardization
(calendar-absolute-from-gregorian nd)))
(list nd ut)))
(defun solar-sidereal-time (t0)
"Sidereal time (in hours) in Greenwich at T0 Julian centuries.
T0 must correspond to 0 hours UT."
(let* ((mean-sid-time (+ 6.6973746
(* 2400.051337 t0)
(* 0.0000258622 t0 t0)
(* -0.0000000017222 t0 t0 t0)))
(et (solar-ephemeris-time (list t0 0.0)))
(nut-i (solar-ecliptic-coordinates et nil))
(nut (nth 3 nut-i)) ; nutation
(i (cadr nut-i))) ; inclination
(mod (+ (mod (+ mean-sid-time
(/ (/ (* nut (solar-cosine-degrees i)) 15) 3600)) 24.0)
24.0)
24.0)))
(defun solar-sunrise-sunset (date)
"List of *local* times of sunrise, sunset, and daylight on Gregorian DATE.
Corresponding value is nil if there is no sunrise/sunset."
;; First, get the exact moment of local noon.
(let* ((exact-local-noon (solar-exact-local-noon date))
;; Get the time from the 2000 epoch.
(t0 (solar-julian-ut-centuries (car exact-local-noon)))
;; Store the sidereal time at Greenwich at midnight of UT time.
;; Find if summer or winter slightly above the equator.
(equator-rise-set
(progn (setq solar-sidereal-time-greenwich-midnight
(solar-sidereal-time t0))
(solar-sunrise-and-sunset
(list t0 (cadr exact-local-noon))
1.0
(calendar-longitude) 0)))
;; Store the spring/summer information, compute sunrise and
;; sunset (two first components of rise-set). Length of day
;; is the third component (it is only the difference between
;; sunset and sunrise when there is a sunset and a sunrise)
(rise-set
(progn
(setq solar-northern-spring-or-summer-season
(> (nth 2 equator-rise-set) 12))
(solar-sunrise-and-sunset
(list t0 (cadr exact-local-noon))
(calendar-latitude)
(calendar-longitude) -0.61)))
(rise-time (car rise-set))
(adj-rise (if rise-time (dst-adjust-time date rise-time)))
(set-time (cadr rise-set))
(adj-set (if set-time (dst-adjust-time date set-time)))
(length (nth 2 rise-set)))
(list
(and rise-time (calendar-date-equal date (car adj-rise)) (cdr adj-rise))
(and set-time (calendar-date-equal date (car adj-set)) (cdr adj-set))
(solar-daylight length))))
(defun solar-sunrise-sunset-string (date &optional nolocation)
"String of *local* times of sunrise, sunset, and daylight on Gregorian DATE.
Optional NOLOCATION non-nil means do not print the location."
(let ((l (solar-sunrise-sunset date)))
(format
"%s, %s%s (%s hrs daylight)"
(if (car l)
(concat "Sunrise " (apply #'solar-time-string (car l)))
"No sunrise")
(if (cadr l)
(concat "sunset " (apply #'solar-time-string (cadr l)))
"no sunset")
(if nolocation ""
(format " at %s" (eval calendar-location-name)))
(nth 2 l))))
(defconst solar-data-list
'((403406 4.721964 1.621043)
(195207 5.937458 62830.348067)
(119433 1.115589 62830.821524)
(112392 5.781616 62829.634302)
(3891 5.5474 125660.5691)
(2819 1.5120 125660.984)
(1721 4.1897 62832.4766)
(0 1.163 0.813)
(660 5.415 125659.31)
(350 4.315 57533.85)
(334 4.553 -33.931)
(314 5.198 777137.715)
(268 5.989 78604.191)
(242 2.911 5.412)
(234 1.423 39302.098)
(158 0.061 -34.861)
(132 2.317 115067.698)
(129 3.193 15774.337)
(114 2.828 5296.670)
(99 0.52 58849.27)
(93 4.65 5296.11)
(86 4.35 -3980.70)
(78 2.75 52237.69)
(72 4.50 55076.47)
(68 3.23 261.08)
(64 1.22 15773.85)
(46 0.14 188491.03)
(38 3.44 -7756.55)
(37 4.37 264.89)
(32 1.14 117906.27)
(29 2.84 55075.75)
(28 5.96 -7961.39)
(27 5.09 188489.81)
(27 1.72 2132.19)
(25 2.56 109771.03)
(24 1.92 54868.56)
(21 0.09 25443.93)
(21 5.98 -55731.43)
(20 4.03 60697.74)
(18 4.47 2132.79)
(17 0.79 109771.63)
(14 4.24 -7752.82)
(13 2.01 188491.91)
(13 2.65 207.81)
(13 4.98 29424.63)
(12 0.93 -7.99)
(10 2.21 46941.14)
(10 3.59 -68.29)
(10 1.50 21463.25)
(10 2.55 157208.40))
"Data used for calculation of solar longitude.")
(defun solar-longitude (d)
"Longitude of sun on astronomical (Julian) day number D.
Accuracy is about 0.0006 degree (about 365.25*24*60*0.0006/360 = 1 minutes).
The values of `calendar-daylight-savings-starts',
`calendar-daylight-savings-starts-time', `calendar-daylight-savings-ends',
`calendar-daylight-savings-ends-time', `calendar-daylight-time-offset', and
`calendar-time-zone' are used to interpret local time."
(let* ((a-d (calendar-astro-to-absolute d))
;; Get Universal Time.
(date (calendar-astro-from-absolute
(- a-d
(if (dst-in-effect a-d)
(/ calendar-daylight-time-offset 24.0 60.0) 0)
(/ calendar-time-zone 60.0 24.0))))
;; Get Ephemeris Time.
(date (+ date (solar-ephemeris-correction
(calendar-extract-year
(calendar-gregorian-from-absolute
(floor
(calendar-astro-to-absolute
date)))))))
(U (/ (- date 2451545) 3652500))
(longitude
(+ 4.9353929
(* 62833.1961680 U)
(* 0.0000001
(apply #'+
(mapcar (lambda (x)
(* (car x)
(sin (mod
(+ (cadr x)
(* (nth 2 x) U))
(* 2 float-pi)))))
solar-data-list)))))
(aberration
(* 0.0000001 (- (* 17 (cos (+ 3.10 (* 62830.14 U)))) 973)))
(A1 (mod (+ 2.18 (* U (+ -3375.70 (* 0.36 U)))) (* 2 float-pi)))
(A2 (mod (+ 3.51 (* U (+ 125666.39 (* 0.10 U)))) (* 2 float-pi)))
(nutation (* -0.0000001 (+ (* 834 (sin A1)) (* 64 (sin A2))))))
(mod (radians-to-degrees (+ longitude aberration nutation)) 360.0)))
(defun solar-date-next-longitude (d l)
"First time after day D when solar longitude is a multiple of L degrees.
D is a Julian day number. L must be an integer divisor of 360.
The result is for `calendar-location-name', and is in local time
\(including any daylight saving rules) expressed in astronomical (Julian)
day numbers. The values of `calendar-daylight-savings-starts',
`calendar-daylight-savings-starts-time', `calendar-daylight-savings-ends',
`calendar-daylight-savings-ends-time', `calendar-daylight-time-offset',
and `calendar-time-zone' are used to interpret local time."
(let ((start d)
(next (mod (* l (1+ (floor (/ (solar-longitude d) l)))) 360))
(end (+ d (* (/ l 360.0) 400)))
long)
;; Bisection search for nearest minute.
(while (< 0.00001 (- end start))
;; start <= d < end
;; start-long <= next < end-long when next != 0
;; when next = 0, look for the discontinuity (start-long is near 360
;; and end-long is small (less than l)).
(setq d (/ (+ start end) 2.0)
long (solar-longitude d))
(if (or (and (not (zerop next)) (< long next))
(and (zerop next) (< l long)))
(setq start d)
(setq end d)))
(/ (+ start end) 2.0)))
;; FIXME but there already is solar-sunrise-sunset.
;;;###autoload
(defun sunrise-sunset (&optional arg)
"Local time of sunrise and sunset for today. Accurate to a few seconds.
If called with an optional prefix argument ARG, prompt for date.
If called with an optional double prefix argument, prompt for
longitude, latitude, time zone, and date, and always use standard time.
This function is suitable for execution in an init file."
(interactive "p")
(or arg (setq arg 1))
(if (and (< arg 16)
(not (and calendar-latitude calendar-longitude calendar-time-zone)))
(solar-setup))
(let* ((calendar-longitude
(if (< arg 16) calendar-longitude
(solar-get-number
"Enter longitude (decimal fraction; + east, - west): ")))
(calendar-latitude
(if (< arg 16) calendar-latitude
(solar-get-number
"Enter latitude (decimal fraction; + north, - south): ")))
(calendar-time-zone
(if (< arg 16) calendar-time-zone
(solar-get-number
"Enter difference from Coordinated Universal Time (in minutes): ")))
(calendar-location-name
(if (< arg 16) calendar-location-name
(let ((float-output-format "%.1f"))
(format "%s%s, %s%s"
(if (numberp calendar-latitude)
(abs calendar-latitude)
(+ (aref calendar-latitude 0)
(/ (aref calendar-latitude 1) 60.0)))
(if (numberp calendar-latitude)
(if (> calendar-latitude 0) "N" "S")
(if (eq (aref calendar-latitude 2) 'north) "N" "S"))
(if (numberp calendar-longitude)
(abs calendar-longitude)
(+ (aref calendar-longitude 0)
(/ (aref calendar-longitude 1) 60.0)))
(if (numberp calendar-longitude)
(if (> calendar-longitude 0) "E" "W")
(if (eq (aref calendar-longitude 2) 'east)
"E" "W"))))))
(calendar-standard-time-zone-name
(if (< arg 16) calendar-standard-time-zone-name
(if (and (zerop calendar-time-zone)
(not (eq calendar-time-zone-style 'numeric)))
"UTC"
(format-time-string "%z" 0 (* 60 calendar-time-zone)))))
(calendar-daylight-savings-starts
(if (< arg 16) calendar-daylight-savings-starts))
(calendar-daylight-savings-ends
(if (< arg 16) calendar-daylight-savings-ends))
(date (if (< arg 4) (calendar-current-date) (calendar-read-date)))
(date-string (calendar-date-string date t))
(time-string (solar-sunrise-sunset-string date))
(msg (format "%s%s"
(if (< arg 4) "" ; don't print date if it's today's
(format "%s: " date-string))
time-string)))
(message "%s" msg)
msg))
;;;###cal-autoload
(defun calendar-sunrise-sunset (&optional event)
"Local time of sunrise and sunset for date under cursor.
Accurate to a few seconds."
(interactive (list last-nonmenu-event))
(or (and calendar-latitude calendar-longitude calendar-time-zone)
(solar-setup))
(let ((date (calendar-cursor-to-date t event)))
(message "%s: %s"
(calendar-date-string date t t)
(solar-sunrise-sunset-string date))))
;;;###cal-autoload
(defun calendar-sunrise-sunset-month (&optional event)
"Local time of sunrise and sunset for month under cursor or at EVENT."
(interactive (list last-nonmenu-event))
(or (and calendar-latitude calendar-longitude calendar-time-zone)
(solar-setup))
(let* ((date (calendar-cursor-to-date t event))
(month (car date))
(year (nth 2 date))
(last (calendar-last-day-of-month month year))
(title (format "Sunrise/sunset times for %s %d at %s"
(calendar-month-name month) year
(eval calendar-location-name))))
(calendar-in-read-only-buffer solar-sunrises-buffer
(calendar-set-mode-line title)
(insert title ":\n\n")
(dotimes (i last)
(setq date (list month (1+ i) year))
(insert (format "%s %2d: " (calendar-month-name month t) (1+ i))
(solar-sunrise-sunset-string date t) "\n")))))
;;;###diary-autoload
(defun diary-sunrise-sunset ()
"Local time of sunrise and sunset as a diary entry.
Accurate to a few seconds."
;; To be called from diary-list-sexp-entries, where DATE is bound.
(with-no-warnings (defvar date))
(or (and calendar-latitude calendar-longitude calendar-time-zone)
(solar-setup))
(solar-sunrise-sunset-string date))
;; From Meeus, 1991, page 167.
(defconst solar-seasons-data
'((485 324.96 1934.136)
(203 337.23 32964.467)
(199 342.08 20.186)
(182 27.85 445267.112)
(156 73.14 45036.886)
(136 171.52 22518.443)
(77 222.54 65928.934)
(74 296.72 3034.906)
(70 243.58 9037.513)
(58 119.81 33718.147)
(52 297.17 150.678)
(50 21.02 2281.226)
(45 247.54 29929.562)
(44 325.15 31555.956)
(29 60.93 4443.417)
(18 155.12 67555.328)
(17 288.79 4562.452)
(16 198.04 62894.029)
(14 199.76 31436.921)
(12 95.39 14577.848)
(12 287.11 31931.756)
(12 320.81 34777.259)
(9 227.73 1222.114)
(8 15.45 16859.074))
"Data for solar equinox/solstice calculations.")
(defun solar-equinoxes/solstices (k year)
"Date of equinox/solstice K for YEAR.
K=0, spring equinox; K=1, summer solstice; K=2, fall equinox;
K=3, winter solstice. RESULT is a Gregorian local date.
Accurate to within a minute between 1951 and 2050."
(let* ((JDE0 (solar-mean-equinoxes/solstices k year))
(T (/ (- JDE0 2451545.0) 36525))
(W (- (* 35999.373 T) 2.47))
(Delta-lambda (+ 1 (* 0.0334 (solar-cosine-degrees W))
(* 0.0007 (solar-cosine-degrees (* 2 W)))))
(S (apply #'+ (mapcar (lambda(x)
(* (car x) (solar-cosine-degrees
(+ (* (nth 2 x) T) (cadr x)))))
solar-seasons-data)))
(JDE (+ JDE0 (/ (* 0.00001 S) Delta-lambda)))
;; Ephemeris time correction.
(correction (+ 102.3 (* 123.5 T) (* 32.5 T T)))
(JD (- JDE (/ correction 86400)))
(date (calendar-gregorian-from-absolute (floor (- JD 1721424.5))))
(time (- (- JD 0.5) (floor (- JD 0.5)))))
(list (car date) (+ (cadr date) time
(/ (/ calendar-time-zone 60.0) 24.0))
(nth 2 date))))
;; From Meeus, 1991, page 166.
(defun solar-mean-equinoxes/solstices (k year)
"Julian day of mean equinox/solstice K for YEAR.
K=0, spring equinox; K=1, summer solstice; K=2, fall equinox; K=3, winter
solstice. These formulas are only to be used between 1000 BC and 3000 AD."
(let ((y (/ year 1000.0))
(z (/ (- year 2000) 1000.0)))
(if (< year 1000) ; actually between -1000 and 1000
(cond ((= k 0) (+ 1721139.29189
(* 365242.13740 y)
(* 0.06134 y y)
(* 0.00111 y y y)
(* -0.00071 y y y y)))
((= k 1) (+ 1721233.25401
(* 365241.72562 y)
(* -0.05323 y y)
(* 0.00907 y y y)
(* 0.00025 y y y y)))
((= k 2) (+ 1721325.70455
(* 365242.49558 y)
(* -0.11677 y y)
(* -0.00297 y y y)
(* 0.00074 y y y y)))
((= k 3) (+ 1721414.39987
(* 365242.88257 y)
(* -0.00769 y y)
(* -0.00933 y y y)
(* -0.00006 y y y y))))
; actually between 1000 and 3000
(cond ((= k 0) (+ 2451623.80984
(* 365242.37404 z)
(* 0.05169 z z)
(* -0.00411 z z z)
(* -0.00057 z z z z)))
((= k 1) (+ 2451716.56767
(* 365241.62603 z)
(* 0.00325 z z)
(* 0.00888 z z z)
(* -0.00030 z z z z)))
((= k 2) (+ 2451810.21715
(* 365242.01767 z)
(* -0.11575 z z)
(* 0.00337 z z z)
(* 0.00078 z z z z)))
((= k 3) (+ 2451900.05952
(* 365242.74049 z)