-
Notifications
You must be signed in to change notification settings - Fork 61
/
curve.go
270 lines (225 loc) · 5.84 KB
/
curve.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
package sm9
import (
"crypto/subtle"
"math/big"
)
// curvePoint implements the elliptic curve y²=x³+5. Points are kept in Jacobian
// form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
type curvePoint struct {
x, y, z, t gfP
}
var curveB = newGFp(5)
// curveGen is the generator of G₁.
var curveGen = &curvePoint{
x: *fromBigInt(bigFromHex("93DE051D62BF718FF5ED0704487D01D6E1E4086909DC3280E8C4E4817C66DDDD")),
y: *fromBigInt(bigFromHex("21FE8DDA4F21E607631065125C395BBC1C1C00CBFA6024350C464CD70A3EA616")),
z: *one,
t: *one,
}
func (c *curvePoint) String() string {
c.MakeAffine()
x, y := &gfP{}, &gfP{}
montDecode(x, &c.x)
montDecode(y, &c.y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *curvePoint) Set(a *curvePoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.Set(&a.z)
c.t.Set(&a.t)
}
// IsOnCurve returns true iff c is on the curve.
func (c *curvePoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() { // TBC: This is not same as golang elliptic
return true
}
y2, x3 := &gfP{}, &gfP{}
gfpMul(y2, &c.y, &c.y)
gfpMul(x3, &c.x, &c.x)
gfpMul(x3, x3, &c.x)
gfpAdd(x3, x3, curveB)
return *y2 == *x3
}
func NewCurvePoint() *curvePoint {
c := &curvePoint{}
c.SetInfinity()
return c
}
func NewCurveGenerator() *curvePoint {
c := &curvePoint{}
c.Set(curveGen)
return c
}
func (c *curvePoint) SetInfinity() {
c.x = *zero
c.y = *one
c.z = *zero
c.t = *zero
}
func (c *curvePoint) IsInfinity() bool {
return c.z == *zero
}
func (c *curvePoint) Add(a, b *curvePoint) {
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z12, z22 := &gfP{}, &gfP{}
gfpMul(z12, &a.z, &a.z)
gfpMul(z22, &b.z, &b.z)
u1, u2 := &gfP{}, &gfP{}
gfpMul(u1, &a.x, z22)
gfpMul(u2, &b.x, z12)
t, s1 := &gfP{}, &gfP{}
gfpMul(t, &b.z, z22)
gfpMul(s1, &a.y, t)
s2 := &gfP{}
gfpMul(t, &a.z, z12)
gfpMul(s2, &b.y, t)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := &gfP{}
gfpSub(h, u2, u1)
xEqual := *h == *zero
gfpAdd(t, h, h)
// i = 4h²
i := &gfP{}
gfpMul(i, t, t)
// j = 4h³
j := &gfP{}
gfpMul(j, h, i)
gfpSub(t, s2, s1)
yEqual := *t == *one
if xEqual && yEqual {
c.Double(a)
return
}
r := &gfP{}
gfpAdd(r, t, t)
v := &gfP{}
gfpMul(v, u1, i)
// t4 = 4(s2-s1)²
t4, t6 := &gfP{}, &gfP{}
gfpMul(t4, r, r)
gfpAdd(t, v, v)
gfpSub(t6, t4, j)
gfpSub(&c.x, t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
gfpSub(t, v, &c.x) // t7
gfpMul(t4, s1, j) // t8
gfpAdd(t6, t4, t4) // t9
gfpMul(t4, r, t) // t10
gfpSub(&c.y, t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
gfpAdd(t, &a.z, &b.z) // t11
gfpMul(t4, t, t) // t12
gfpSub(t, t4, z12) // t13
gfpSub(t4, t, z22) // t14
gfpMul(&c.z, t4, h)
}
func (c *curvePoint) Double(a *curvePoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A, B, C := &gfP{}, &gfP{}, &gfP{}
gfpMul(A, &a.x, &a.x)
gfpMul(B, &a.y, &a.y)
gfpMul(C, B, B)
t, t2 := &gfP{}, &gfP{}
gfpAdd(t, &a.x, B)
gfpMul(t2, t, t)
gfpSub(t, t2, A)
gfpSub(t2, t, C)
d, e, f := &gfP{}, &gfP{}, &gfP{}
gfpAdd(d, t2, t2)
gfpAdd(t, A, A)
gfpAdd(e, t, A)
gfpMul(f, e, e)
gfpAdd(t, d, d)
gfpSub(&c.x, f, t)
gfpMul(&c.z, &a.y, &a.z)
gfpAdd(&c.z, &c.z, &c.z)
gfpAdd(t, C, C)
gfpAdd(t2, t, t)
gfpAdd(t, t2, t2)
gfpSub(&c.y, d, &c.x)
gfpMul(t2, e, &c.y)
gfpSub(&c.y, t2, t)
}
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
sum, t := &curvePoint{}, &curvePoint{}
sum.SetInfinity()
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum)
if scalar.Bit(i) != 0 {
sum.Add(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
}
func (c *curvePoint) MakeAffine() {
if c.z == *one {
return
} else if c.z == *zero {
c.x = *zero
c.y = *one
c.t = *zero
return
}
zInv := &gfP{}
zInv.Invert(&c.z)
t, zInv2 := &gfP{}, &gfP{}
gfpMul(t, &c.y, zInv)
gfpMul(zInv2, zInv, zInv)
gfpMul(&c.x, &c.x, zInv2)
gfpMul(&c.y, t, zInv2)
c.z = *one
c.t = *one
}
func (c *curvePoint) Neg(a *curvePoint) {
c.x.Set(&a.x)
gfpNeg(&c.y, &a.y)
c.z.Set(&a.z)
c.t = *zero
}
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
func (q *curvePoint) Select(p1, p2 *curvePoint, cond int) *curvePoint {
q.x.Select(&p1.x, &p2.x, cond)
q.y.Select(&p1.y, &p2.y, cond)
q.z.Select(&p1.z, &p2.z, cond)
q.t.Select(&p1.t, &p2.t, cond)
return q
}
// A curvePointTable holds the first 15 multiples of a point at offset -1, so [1]P
// is at table[0], [15]P is at table[14], and [0]P is implicitly the identity
// point.
type curvePointTable [15]*curvePoint
// Select selects the n-th multiple of the table base point into p. It works in
// constant time by iterating over every entry of the table. n must be in [0, 15].
func (table *curvePointTable) Select(p *curvePoint, n uint8) {
if n >= 16 {
panic("sm9: internal error: curvePointTable called with out-of-bounds value")
}
p.SetInfinity()
for i := uint8(1); i < 16; i++ {
cond := subtle.ConstantTimeByteEq(i, n)
p.Select(table[i-1], p, cond)
}
}