-
Notifications
You must be signed in to change notification settings - Fork 61
/
sm9.go
674 lines (585 loc) · 19.9 KB
/
sm9.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
// Package sm9 handle shangmi sm9 algorithm and its curves and pairing implementation
package sm9
import (
"crypto"
goSubtle "crypto/subtle"
"encoding/binary"
"errors"
"fmt"
"io"
"math/big"
"github.com/emmansun/gmsm/internal/xor"
"github.com/emmansun/gmsm/sm3"
"github.com/emmansun/gmsm/sm9/bn256"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// SM9 ASN.1 format reference: Information security technology - SM9 cryptographic algorithm application specification
var bigOne = big.NewInt(1)
type hashMode byte
const (
// hashmode used in h1: 0x01
H1 hashMode = 1 + iota
// hashmode used in h2: 0x02
H2
)
type encryptType byte
const (
ENC_TYPE_XOR encryptType = 0
ENC_TYPE_ECB encryptType = 1
ENC_TYPE_CBC encryptType = 2
ENC_TYPE_OFB encryptType = 4
ENC_TYPE_CFB encryptType = 8
)
//hash implements H1(Z,n) or H2(Z,n) in sm9 algorithm.
func hash(z []byte, h hashMode) *big.Int {
md := sm3.New()
var ha [64]byte
var countBytes [4]byte
var ct uint32 = 1
for i := 0; i < 2; i++ {
binary.BigEndian.PutUint32(countBytes[:], ct)
md.Write([]byte{byte(h)})
md.Write(z)
md.Write(countBytes[:])
copy(ha[i*sm3.Size:], md.Sum(nil))
ct++
md.Reset()
}
k := new(big.Int).SetBytes(ha[:40])
n := new(big.Int).Sub(bn256.Order, bigOne)
k.Mod(k, n)
k.Add(k, bigOne)
return k
}
func hashH1(z []byte) *big.Int {
return hash(z, H1)
}
func hashH2(z []byte) *big.Int {
return hash(z, H2)
}
// randFieldElement returns a random element of the order of the given
// curve using the procedure given in FIPS 186-4, Appendix B.5.1.
func randFieldElement(rand io.Reader) (k *big.Int, err error) {
b := make([]byte, 40) // (256 + 64) / 8
_, err = io.ReadFull(rand, b)
if err != nil {
return
}
k = new(big.Int).SetBytes(b)
n := new(big.Int).Sub(bn256.Order, bigOne)
k.Mod(k, n)
k.Add(k, bigOne)
return
}
// Pair generate the basepoint once
func (pub *SignMasterPublicKey) Pair() *bn256.GT {
pub.pairOnce.Do(func() {
pub.basePoint = bn256.Pair(bn256.Gen1, pub.MasterPublicKey)
})
return pub.basePoint
}
func (pub *SignMasterPublicKey) generatorTable() *[32 * 2]bn256.GTFieldTable {
pub.tableGenOnce.Do(func() {
pub.table = bn256.GenerateGTFieldTable(pub.Pair())
})
return pub.table
}
// ScalarBaseMult compute basepoint^r with precomputed table
func (pub *SignMasterPublicKey) ScalarBaseMult(r *big.Int) *bn256.GT {
tables := pub.generatorTable()
return bn256.ScalarBaseMultGT(tables, r)
}
// Sign signs a hash (which should be the result of hashing a larger message)
// using the user dsa key. It returns the signature as a pair of h and s.
func Sign(rand io.Reader, priv *SignPrivateKey, hash []byte) (h *big.Int, s *bn256.G1, err error) {
var r *big.Int
for {
r, err = randFieldElement(rand)
if err != nil {
return
}
w := priv.SignMasterPublicKey.ScalarBaseMult(r)
var buffer []byte
buffer = append(buffer, hash...)
buffer = append(buffer, w.Marshal()...)
h = hashH2(buffer)
l := new(big.Int).Sub(r, h)
if l.Sign() < 0 {
l.Add(l, bn256.Order)
}
if l.Sign() != 0 {
s = new(bn256.G1).ScalarMult(priv.PrivateKey, l)
break
}
}
return
}
// Sign signs digest with user's DSA key, reading randomness from rand. The opts argument
// is not currently used but, in keeping with the crypto.Signer interface.
// The result is SM9Signature ASN.1 format.
func (priv *SignPrivateKey) Sign(rand io.Reader, hash []byte, opts crypto.SignerOpts) ([]byte, error) {
h, s, err := Sign(rand, priv, hash)
if err != nil {
return nil, err
}
hBytes := make([]byte, 32)
h.FillBytes(hBytes)
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1OctetString(hBytes)
b.AddASN1BitString(s.MarshalUncompressed())
})
return b.Bytes()
}
// SignASN1 signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. It returns the ASN.1 encoded signature of type SM9Signature.
func SignASN1(rand io.Reader, priv *SignPrivateKey, hash []byte) ([]byte, error) {
return priv.Sign(rand, hash, nil)
}
// Verify verifies the signature in h, s of hash using the master dsa public key and user id, uid and hid.
// Its return value records whether the signature is valid.
func Verify(pub *SignMasterPublicKey, uid []byte, hid byte, hash []byte, h *big.Int, s *bn256.G1) bool {
if h.Sign() <= 0 || h.Cmp(bn256.Order) >= 0 {
return false
}
if !s.IsOnCurve() {
return false
}
t := pub.ScalarBaseMult(h)
// user sign public key p generation
p := pub.GenerateUserPublicKey(uid, hid)
u := bn256.Pair(s, p)
w := new(bn256.GT).Add(u, t)
var buffer []byte
buffer = append(buffer, hash...)
buffer = append(buffer, w.Marshal()...)
h2 := hashH2(buffer)
return h.Cmp(h2) == 0
}
// VerifyASN1 verifies the ASN.1 encoded signature of type SM9Signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
func VerifyASN1(pub *SignMasterPublicKey, uid []byte, hid byte, hash, sig []byte) bool {
var (
hBytes []byte
sBytes []byte
inner cryptobyte.String
)
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Bytes(&hBytes, asn1.OCTET_STRING) ||
!inner.ReadASN1BitStringAsBytes(&sBytes) ||
!inner.Empty() {
return false
}
h := new(big.Int).SetBytes(hBytes)
if sBytes[0] != 4 {
return false
}
s := new(bn256.G1)
_, err := s.Unmarshal(sBytes[1:])
if err != nil {
return false
}
return Verify(pub, uid, hid, hash, h, s)
}
// Verify verifies the ASN.1 encoded signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
func (pub *SignMasterPublicKey) Verify(uid []byte, hid byte, hash, sig []byte) bool {
return VerifyASN1(pub, uid, hid, hash, sig)
}
// Pair generate the basepoint once
func (pub *EncryptMasterPublicKey) Pair() *bn256.GT {
pub.pairOnce.Do(func() {
pub.basePoint = bn256.Pair(pub.MasterPublicKey, bn256.Gen2)
})
return pub.basePoint
}
func (pub *EncryptMasterPublicKey) generatorTable() *[32 * 2]bn256.GTFieldTable {
pub.tableGenOnce.Do(func() {
pub.table = bn256.GenerateGTFieldTable(pub.Pair())
})
return pub.table
}
// ScalarBaseMult compute basepoint^r with precomputed table
func (pub *EncryptMasterPublicKey) ScalarBaseMult(r *big.Int) *bn256.GT {
tables := pub.generatorTable()
return bn256.ScalarBaseMultGT(tables, r)
}
// WrapKey generate and wrap key wtih reciever's uid and system hid
func WrapKey(rand io.Reader, pub *EncryptMasterPublicKey, uid []byte, hid byte, kLen int) (key []byte, cipher *bn256.G1, err error) {
q := pub.GenerateUserPublicKey(uid, hid)
var r *big.Int
var ok bool
for {
r, err = randFieldElement(rand)
if err != nil {
return
}
cipher = new(bn256.G1).ScalarMult(q, r)
w := pub.ScalarBaseMult(r)
var buffer []byte
buffer = append(buffer, cipher.Marshal()...)
buffer = append(buffer, w.Marshal()...)
buffer = append(buffer, uid...)
key, ok = sm3.Kdf(buffer, kLen)
if ok {
break
}
}
return
}
// WrapKey wrap key and marshal the cipher as ASN1 format, SM9PublicKey1 definition.
func (pub *EncryptMasterPublicKey) WrapKey(rand io.Reader, uid []byte, hid byte, kLen int) ([]byte, []byte, error) {
key, cipher, err := WrapKey(rand, pub, uid, hid, kLen)
if err != nil {
return nil, nil, err
}
var b cryptobyte.Builder
b.AddASN1BitString(cipher.MarshalUncompressed())
cipherASN1, err := b.Bytes()
return key, cipherASN1, err
}
// WrapKeyASN1 wrap key and marshal the result of SM9KeyPackage as ASN1 format. according
// SM9 cryptographic algorithm application specification, SM9KeyPackage defnition.
func (pub *EncryptMasterPublicKey) WrapKeyASN1(rand io.Reader, uid []byte, hid byte, kLen int) ([]byte, error) {
key, cipher, err := WrapKey(rand, pub, uid, hid, kLen)
if err != nil {
return nil, err
}
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1OctetString(key)
b.AddASN1BitString(cipher.MarshalUncompressed())
})
return b.Bytes()
}
// UnmarshalSM9KeyPackage is an utility to unmarshal SM9KeyPackage
func UnmarshalSM9KeyPackage(der []byte) ([]byte, *bn256.G1, error) {
input := cryptobyte.String(der)
var (
key []byte
cipherBytes []byte
inner cryptobyte.String
)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Bytes(&key, asn1.OCTET_STRING) ||
!inner.ReadASN1BitStringAsBytes(&cipherBytes) ||
!inner.Empty() {
return nil, nil, errors.New("sm9: invalid SM9KeyPackage asn.1 data")
}
g, err := unmarshalG1(cipherBytes)
if err != nil {
return nil, nil, err
}
return key, g, nil
}
// UnwrapKey unwrap key from cipher, user id and aligned key length
func UnwrapKey(priv *EncryptPrivateKey, uid []byte, cipher *bn256.G1, kLen int) ([]byte, error) {
if !cipher.IsOnCurve() {
return nil, errors.New("sm9: invalid cipher, it's NOT on curve")
}
w := bn256.Pair(cipher, priv.PrivateKey)
var buffer []byte
buffer = append(buffer, cipher.Marshal()...)
buffer = append(buffer, w.Marshal()...)
buffer = append(buffer, uid...)
key, ok := sm3.Kdf(buffer, kLen)
if !ok {
return nil, errors.New("sm9: invalid cipher")
}
return key, nil
}
// UnwrapKey unwrap key from cipherDer, user id and aligned key length.
// cipherDer is SM9PublicKey1 format according SM9 cryptographic algorithm application specification.
func (priv *EncryptPrivateKey) UnwrapKey(uid, cipherDer []byte, kLen int) ([]byte, error) {
var bytes []byte
input := cryptobyte.String(cipherDer)
if !input.ReadASN1BitStringAsBytes(&bytes) || !input.Empty() {
return nil, errors.New("sm9: invalid chipher asn1 data")
}
g, err := unmarshalG1(bytes)
if err != nil {
return nil, err
}
return UnwrapKey(priv, uid, g, kLen)
}
// Encrypt encrypt plaintext, output ciphertext with format C1||C3||C2
func Encrypt(rand io.Reader, pub *EncryptMasterPublicKey, uid []byte, hid byte, plaintext []byte) ([]byte, error) {
key, cipher, err := WrapKey(rand, pub, uid, hid, len(plaintext)+sm3.Size)
if err != nil {
return nil, err
}
xor.XorBytes(key, key[:len(plaintext)], plaintext)
hash := sm3.New()
hash.Write(key)
c3 := hash.Sum(nil)
ciphertext := append(cipher.Marshal(), c3...)
ciphertext = append(ciphertext, key[:len(plaintext)]...)
return ciphertext, nil
}
// EncryptASN1 encrypt plaintext and output ciphertext with ASN.1 format according
// SM9 cryptographic algorithm application specification, SM9Cipher definition.
func EncryptASN1(rand io.Reader, pub *EncryptMasterPublicKey, uid []byte, hid byte, plaintext []byte) ([]byte, error) {
return pub.Encrypt(rand, uid, hid, plaintext)
}
// Encrypt encrypt plaintext and output ciphertext with ASN.1 format according
// SM9 cryptographic algorithm application specification, SM9Cipher definition.
func (pub *EncryptMasterPublicKey) Encrypt(rand io.Reader, uid []byte, hid byte, plaintext []byte) ([]byte, error) {
key, cipher, err := WrapKey(rand, pub, uid, hid, len(plaintext)+sm3.Size)
if err != nil {
return nil, err
}
xor.XorBytes(key, key[:len(plaintext)], plaintext)
hash := sm3.New()
hash.Write(key)
c3 := hash.Sum(nil)
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1Int64(int64(ENC_TYPE_XOR))
b.AddASN1BitString(cipher.MarshalUncompressed())
b.AddASN1OctetString(c3)
b.AddASN1OctetString(key[:len(plaintext)])
})
return b.Bytes()
}
// Decrypt decrypt chipher, ciphertext should be with format C1||C3||C2
func Decrypt(priv *EncryptPrivateKey, uid, ciphertext []byte) ([]byte, error) {
c := &bn256.G1{}
c3, err := c.Unmarshal(ciphertext)
if err != nil {
return nil, err
}
key, err := UnwrapKey(priv, uid, c, len(c3))
if err != nil {
return nil, err
}
c2 := c3[sm3.Size:]
hash := sm3.New()
hash.Write(c2)
hash.Write(key[len(c2):])
c32 := hash.Sum(nil)
if goSubtle.ConstantTimeCompare(c3[:sm3.Size], c32) != 1 {
return nil, errors.New("sm9: invalid mac value")
}
xor.XorBytes(key, c2, key[:len(c2)])
return key[:len(c2)], nil
}
// DecryptASN1 decrypt chipher, ciphertext should be with ASN.1 format according
// SM9 cryptographic algorithm application specification, SM9Cipher definition.
func DecryptASN1(priv *EncryptPrivateKey, uid, ciphertext []byte) ([]byte, error) {
if len(ciphertext) <= 32+65 {
return nil, errors.New("sm9: invalid ciphertext length")
}
var (
encType int
c3Bytes []byte
c1Bytes []byte
c2Bytes []byte
inner cryptobyte.String
)
input := cryptobyte.String(ciphertext)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(&encType) ||
!inner.ReadASN1BitStringAsBytes(&c1Bytes) ||
!inner.ReadASN1Bytes(&c3Bytes, asn1.OCTET_STRING) ||
!inner.ReadASN1Bytes(&c2Bytes, asn1.OCTET_STRING) ||
!inner.Empty() {
return nil, errors.New("sm9: invalid ciphertext asn.1 data")
}
if encType != int(ENC_TYPE_XOR) {
return nil, fmt.Errorf("sm9: does not support this kind of encrypt type <%v> yet", encType)
}
c, err := unmarshalG1(c1Bytes)
if err != nil {
return nil, err
}
key, err := UnwrapKey(priv, uid, c, len(c2Bytes)+len(c3Bytes))
if err != nil {
return nil, err
}
if err != nil {
return nil, err
}
hash := sm3.New()
hash.Write(c2Bytes)
hash.Write(key[len(c2Bytes):])
c32 := hash.Sum(nil)
if goSubtle.ConstantTimeCompare(c3Bytes, c32) != 1 {
return nil, errors.New("sm9: invalid mac value")
}
xor.XorBytes(key, c2Bytes, key[:len(c2Bytes)])
return key[:len(c2Bytes)], nil
}
// Decrypt decrypt chipher, ciphertext should be with ASN.1 format according
// SM9 cryptographic algorithm application specification, SM9Cipher definition.
func (priv *EncryptPrivateKey) Decrypt(uid, ciphertext []byte) ([]byte, error) {
if ciphertext[0] == 0x30 { // should be ASN.1 format
return DecryptASN1(priv, uid, ciphertext)
}
// fallback to C1||C3||C2 raw format
return Decrypt(priv, uid, ciphertext)
}
// KeyExchange key exchange struct, include internal stat in whole key exchange flow.
// Initiator's flow will be: NewKeyExchange -> InitKeyExchange -> transmission -> ConfirmResponder
// Responder's flow will be: NewKeyExchange -> waiting ... -> RepondKeyExchange -> transmission -> ConfirmInitiator
type KeyExchange struct {
genSignature bool // control the optional sign/verify step triggered by responsder
keyLength int // key length
privateKey *EncryptPrivateKey // owner's encryption private key
uid []byte // owner uid
peerUID []byte // peer uid
r *big.Int // random which will be used to compute secret
secret *bn256.G1 // generated secret which will be passed to peer
peerSecret *bn256.G1 // received peer's secret
g1 *bn256.GT // internal state which will be used when compute the key and signature
g2 *bn256.GT // internal state which will be used when compute the key and signature
g3 *bn256.GT // internal state which will be used when compute the key and signature
key []byte // key will be used after key agreement
}
// NewKeyExchange create one new KeyExchange object
func NewKeyExchange(priv *EncryptPrivateKey, uid, peerUID []byte, keyLen int, genSignature bool) *KeyExchange {
ke := &KeyExchange{}
ke.genSignature = genSignature
ke.keyLength = keyLen
ke.privateKey = priv
ke.uid = uid
ke.peerUID = peerUID
return ke
}
// GetKey return key after key agreement
func (ke *KeyExchange) GetKey() []byte {
return ke.key
}
func initKeyExchange(ke *KeyExchange, hid byte, r *big.Int) {
pubB := ke.privateKey.GenerateUserPublicKey(ke.peerUID, hid)
ke.r = r
rA := new(bn256.G1).ScalarMult(pubB, ke.r)
ke.secret = rA
}
// InitKeyExchange generate random with responder uid, for initiator's step A1-A4
func (ke *KeyExchange) InitKeyExchange(rand io.Reader, hid byte) (*bn256.G1, error) {
r, err := randFieldElement(rand)
if err != nil {
return nil, err
}
initKeyExchange(ke, hid, r)
return ke.secret, nil
}
func respondKeyExchange(ke *KeyExchange, hid byte, r *big.Int, rA *bn256.G1) (*bn256.G1, []byte, error) {
if !rA.IsOnCurve() {
return nil, nil, errors.New("SM9: received invalid random from initiator")
}
ke.peerSecret = rA
pubA := ke.privateKey.GenerateUserPublicKey(ke.peerUID, hid)
ke.r = r
rB := new(bn256.G1).ScalarMult(pubA, r)
ke.secret = rB
ke.g1 = bn256.Pair(ke.peerSecret, ke.privateKey.PrivateKey)
ke.g3 = &bn256.GT{}
ke.g3.ScalarMult(ke.g1, r)
ke.g2 = ke.privateKey.EncryptMasterPublicKey.ScalarBaseMult(r)
var buffer []byte
buffer = append(buffer, ke.peerUID...)
buffer = append(buffer, ke.uid...)
buffer = append(buffer, ke.peerSecret.Marshal()...)
buffer = append(buffer, ke.secret.Marshal()...)
buffer = append(buffer, ke.g1.Marshal()...)
buffer = append(buffer, ke.g2.Marshal()...)
buffer = append(buffer, ke.g3.Marshal()...)
key, _ := sm3.Kdf(buffer, ke.keyLength)
ke.key = key
if !ke.genSignature {
return ke.secret, nil, nil
}
hash := sm3.New()
hash.Write(ke.g2.Marshal())
hash.Write(ke.g3.Marshal())
hash.Write(ke.peerUID)
hash.Write(ke.uid)
hash.Write(ke.peerSecret.Marshal())
hash.Write(ke.secret.Marshal())
buffer = hash.Sum(nil)
hash.Reset()
hash.Write([]byte{0x82})
hash.Write(ke.g1.Marshal())
hash.Write(buffer)
buffer = hash.Sum(nil)
return ke.secret, buffer, nil
}
// RepondKeyExchange when responder receive rA, for responder's step B1-B7
func (ke *KeyExchange) RepondKeyExchange(rand io.Reader, hid byte, rA *bn256.G1) (*bn256.G1, []byte, error) {
r, err := randFieldElement(rand)
if err != nil {
return nil, nil, err
}
return respondKeyExchange(ke, hid, r, rA)
}
// ConfirmResponder for initiator's step A5-A7
func (ke *KeyExchange) ConfirmResponder(rB *bn256.G1, sB []byte) ([]byte, error) {
hash := sm3.New()
// step 5
ke.peerSecret = rB
ke.g1 = ke.privateKey.EncryptMasterPublicKey.ScalarBaseMult(ke.r)
ke.g2 = bn256.Pair(ke.peerSecret, ke.privateKey.PrivateKey)
ke.g3 = &bn256.GT{}
ke.g3.ScalarMult(ke.g2, ke.r)
// step 6, verify signature
var temp []byte
var buffer []byte
if len(sB) > 0 {
hash.Write(ke.g2.Marshal())
hash.Write(ke.g3.Marshal())
hash.Write(ke.uid)
hash.Write(ke.peerUID)
hash.Write(ke.secret.Marshal())
hash.Write(ke.peerSecret.Marshal())
temp = hash.Sum(nil)
hash.Reset()
hash.Write([]byte{0x82})
hash.Write(ke.g1.Marshal())
hash.Write(temp)
signature := hash.Sum(nil)
hash.Reset()
if goSubtle.ConstantTimeCompare(signature, sB) != 1 {
return nil, errors.New("sm9: verify signature fail")
}
}
buffer = append(buffer, ke.uid...)
buffer = append(buffer, ke.peerUID...)
buffer = append(buffer, ke.secret.Marshal()...)
buffer = append(buffer, ke.peerSecret.Marshal()...)
buffer = append(buffer, ke.g1.Marshal()...)
buffer = append(buffer, ke.g2.Marshal()...)
buffer = append(buffer, ke.g3.Marshal()...)
key, _ := sm3.Kdf(buffer, ke.keyLength)
ke.key = key
hash.Write([]byte{0x83})
hash.Write(ke.g1.Marshal())
hash.Write(temp)
return hash.Sum(nil), nil
}
// ConfirmInitiator for responder's step B8
func (ke *KeyExchange) ConfirmInitiator(s1 []byte) error {
hash := sm3.New()
var buffer []byte
hash.Write(ke.g2.Marshal())
hash.Write(ke.g3.Marshal())
hash.Write(ke.peerUID)
hash.Write(ke.uid)
hash.Write(ke.peerSecret.Marshal())
hash.Write(ke.secret.Marshal())
buffer = hash.Sum(nil)
hash.Reset()
hash.Write([]byte{0x83})
hash.Write(ke.g1.Marshal())
hash.Write(buffer)
buffer = hash.Sum(nil)
if goSubtle.ConstantTimeCompare(buffer, s1) != 1 {
return errors.New("sm9: verify signature fail")
}
return nil
}