-
Notifications
You must be signed in to change notification settings - Fork 0
/
utilities.py
40 lines (37 loc) · 1.68 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 50, fill = '█', printEnd = "\r"):
"""
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
printEnd - Optional : end character (e.g. "\r", "\r\n") (Str)
"""
percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
filledLength = int(length * iteration // total)
bar = fill * filledLength + '-' * (length - filledLength)
print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = printEnd, flush=True)
# Print New Line on Complete
if iteration == total:
print()
def printConfusionMatrix (y_true, y_pred):
"""
Print the confusion matrix
@params
y_true - true values
y_pred - predicted values
"""
conf_stat = confusion_matrix(y_true=y_true, y_pred=y_pred)
fig, ax = plt.subplots(figsize=(5,5), tight_layout=True)
sns.heatmap(conf_stat, annot=True, fmt=".3f",
linewidths=.5, square = True,
cmap = 'Blues_r',cbar=False);
ax.set_ylabel('True Label', fontsize=14);
ax.set_xlabel('Predicted Label', fontsize=14);