Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Training issue]为什么在某些分辨率下,算法会对一类目标漏检? #26

Open
yiran-THU opened this issue Dec 4, 2019 · 7 comments

Comments

@yiran-THU
Copy link

yiran-THU commented Dec 4, 2019

up主你好,感谢你的工作。

1.我最近在用一些自己的数据训练Yolov3_lite,然后进行测试。因为数据图像的尺度(1280*1280)固定,目标尺寸大小固定,所以我重新更改了网络结构,并用

It is very strange , can you try this way ?

的办法重新计算了anchor boxes,但是检测结果不理想,在测试集中该类目标一个都没检测出来!其他目标检测结果都正常;

2.此外,我还试过将图像分辨率(1024*1024)改小,并重新计算anchor,结果在该分辨率下,目标能检测出来,但是置信度较低。

3.若是将图像分辨率改为832*832,则该类目标检测结果正常。

My train prototxt

name: "MobileNet-YOLO"
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}

transform_param {
scale: 0.007843
mirror: true
mean_value: 127.5
mean_value: 127.5
mean_value: 127.5

resize_param {
prob: 1.0
resize_mode: WARP
height: 1280
width: 1280
interp_mode: LINEAR
interp_mode: AREA
interp_mode: LANCZOS4
}
emit_constraint {
emit_type: CENTER
}
distort_param {
brightness_prob: 0.5
brightness_delta: 32.0
contrast_prob: 0.5
contrast_lower: 0.5
contrast_upper: 1.5
hue_prob: 0.5
hue_delta: 18.0
saturation_prob: 0.5
saturation_lower: 0.5
saturation_upper: 1.5
random_order_prob: 0.0
}
expand_param {
prob: 0.5
max_expand_ratio: 3.0
}
}
data_param {
source: "examples/VOC0712/VOC0712_trainval_lmdb"
batch_size: 1
backend: LMDB
}
annotated_data_param {
yolo_data_type : 1
yolo_data_jitter : 0.3
label_map_file: "data/VOC0712/labelmap_voc.prototxt"
}
}

layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv0/bn"
type: "BatchNorm"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv0/scale"
type: "Scale"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv0/relu"
type: "ReLU"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv1/dw"
type: "DepthwiseConvolution"
bottom: "conv0"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/dw/bn"
type: "BatchNorm"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/dw/scale"
type: "Scale"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/dw/relu"
type: "ReLU"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv1/dw"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2/dw"
type: "DepthwiseConvolution"
bottom: "conv1"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 64
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/dw/bn"
type: "BatchNorm"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/dw/scale"
type: "Scale"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/dw/relu"
type: "ReLU"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv2/dw"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/bn"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/scale"
type: "Scale"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3/dw"
type: "DepthwiseConvolution"
bottom: "conv2"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/dw/bn"
type: "BatchNorm"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/dw/scale"
type: "Scale"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/dw/relu"
type: "ReLU"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv3/dw"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/bn"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/scale"
type: "Scale"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/relu"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4/dw"
type: "DepthwiseConvolution"
bottom: "conv3"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/dw/bn"
type: "BatchNorm"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/dw/scale"
type: "Scale"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/dw/relu"
type: "ReLU"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv4/dw"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/bn"
type: "BatchNorm"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/scale"
type: "Scale"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/relu"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5/dw"
type: "DepthwiseConvolution"
bottom: "conv4"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/dw/bn"
type: "BatchNorm"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/dw/scale"
type: "Scale"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/dw/relu"
type: "ReLU"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv5/dw"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/bn"
type: "BatchNorm"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/scale"
type: "Scale"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/relu"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6/dw"
type: "DepthwiseConvolution"
bottom: "conv5"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/dw/bn"
type: "BatchNorm"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/dw/scale"
type: "Scale"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/dw/relu"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/bn"
type: "BatchNorm"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/scale"
type: "Scale"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/relu"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7/dw"
type: "DepthwiseConvolution"
bottom: "conv6"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/dw/bn"
type: "BatchNorm"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/dw/scale"
type: "Scale"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/dw/relu"
type: "ReLU"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv7/dw"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/bn"
type: "BatchNorm"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/scale"
type: "Scale"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/relu"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8/dw"
type: "DepthwiseConvolution"
bottom: "conv7"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/dw/bn"
type: "BatchNorm"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/dw/scale"
type: "Scale"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/dw/relu"
type: "ReLU"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv8/dw"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/bn"
type: "BatchNorm"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/scale"
type: "Scale"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/relu"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9/dw"
type: "DepthwiseConvolution"
bottom: "conv8"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/dw/bn"
type: "BatchNorm"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/dw/scale"
type: "Scale"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/dw/relu"
type: "ReLU"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv9/dw"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/bn"
type: "BatchNorm"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/scale"
type: "Scale"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/relu"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10/dw"
type: "DepthwiseConvolution"
bottom: "conv9"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/dw/bn"
type: "BatchNorm"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/dw/scale"
type: "Scale"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/dw/relu"
type: "ReLU"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv10/dw"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/bn"
type: "BatchNorm"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/scale"
type: "Scale"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/relu"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11/dw"
type: "DepthwiseConvolution"
bottom: "conv10"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/dw/bn"
type: "BatchNorm"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/dw/scale"
type: "Scale"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/dw/relu"
type: "ReLU"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv11/dw"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/bn"
type: "BatchNorm"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/scale"
type: "Scale"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/relu"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12/dw"
type: "DepthwiseConvolution"
bottom: "conv11"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/dw/bn"
type: "BatchNorm"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/dw/scale"
type: "Scale"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/dw/relu"
type: "ReLU"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv12/dw"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/bn"
type: "BatchNorm"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/scale"
type: "Scale"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/relu"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13/dw"
type: "DepthwiseConvolution"
bottom: "conv12"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/dw/bn"
type: "BatchNorm"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/dw/scale"
type: "Scale"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/dw/relu"
type: "ReLU"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv13/dw"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/bn"
type: "BatchNorm"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/scale"
type: "Scale"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0.1
decay_mult: 0.0
}
param {
lr_mult: 0.2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/relu"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}

layer {
name: "conv16/dw"
type: "DepthwiseConvolution"
bottom: "conv13"
top: "conv16/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16/dw/bn"
type: "BatchNorm"
bottom: "conv16/dw"
top: "conv16/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16/dw/scale"
type: "Scale"
bottom: "conv16/dw"
top: "conv16/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16/dw/relu"
type: "ReLU"
bottom: "conv16/dw"
top: "conv16/dw"
}
layer {
name: "conv16"
type: "Convolution"
bottom: "conv16/dw"
top: "conv16"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16/bn"
type: "BatchNorm"
bottom: "conv16"
top: "conv16"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16/scale"
type: "Scale"
bottom: "conv16"
top: "conv16"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16/relu"
type: "ReLU"
bottom: "conv16"
top: "conv16"
}
layer {
name: "upsample"
type: "Deconvolution"
bottom: "conv16"
top: "upsample"
param { lr_mult: 0 decay_mult: 0 }
convolution_param {
num_output: 512
kernel_size: 4 stride: 2 pad: 1
group: 512
weight_filler: { type: "bilinear" }
bias_term: false
}
}
layer {
name: "conv17/dw"
type: "DepthwiseConvolution"
bottom: "conv11"
top: "conv17/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17/dw/bn"
type: "BatchNorm"
bottom: "conv17/dw"
top: "conv17/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17/dw/scale"
type: "Scale"
bottom: "conv17/dw"
top: "conv17/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17/dw/relu"
type: "ReLU"
bottom: "conv17/dw"
top: "conv17/dw"
}
layer {
name: "conv17"
type: "Convolution"
bottom: "conv17/dw"
top: "conv17"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17/bn"
type: "BatchNorm"
bottom: "conv17"
top: "conv17"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17/scale"
type: "Scale"
bottom: "conv17"
top: "conv17"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17/relu"
type: "ReLU"
bottom: "conv17"
top: "conv17"
}
layer {
name: "conv17/sum"
type: "Eltwise"
bottom: "conv17"
bottom: "upsample"
top: "conv17/sum"
}
layer {
name: "conv18/dw"
type: "DepthwiseConvolution"
bottom: "conv17/sum"
top: "conv18/dw"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv18/dw/bn"
type: "BatchNorm"
bottom: "conv18/dw"
top: "conv18/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv18/dw/scale"
type: "Scale"
bottom: "conv18/dw"
top: "conv18/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv18/dw/relu"
type: "ReLU"
bottom: "conv18/dw"
top: "conv18/dw"
}
layer {
name: "conv18"
type: "Convolution"
bottom: "conv18/dw"
top: "conv18"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv18/bn"
type: "BatchNorm"
bottom: "conv18"
top: "conv18"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv18/scale"
type: "Scale"
bottom: "conv18"
top: "conv18"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv18/relu"
type: "ReLU"
bottom: "conv18"
top: "conv18"
}

layer {
name: "conv20_new"
type: "Convolution"
bottom: "conv16"
top: "conv20_new"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 1024
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}
layer {
name: "conv20_new/bn"
type: "BatchNorm"
bottom: "conv20_new"
top: "conv20_new"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv20_new/scale"
type: "Scale"
bottom: "conv20_new"
top: "conv20_new"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}

layer {
name: "conv20_new/relu"
type: "ReLU"
bottom: "conv20_new"
top: "conv20_new"
}

layer {
name: "conv21"
type: "Convolution"
bottom: "conv18"
top: "conv21"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 75
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "conv22/dw"
type: "DepthwiseConvolution"
bottom: "conv20_new"
top: "conv22/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: true
pad: 1
kernel_size: 3
stride: 2
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}

layer {
name: "conv22/dw/bn"
type: "BatchNorm"
bottom: "conv22/dw"
top: "conv22/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv22/dw/scale"
type: "Scale"
bottom: "conv22/dw"
top: "conv22/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv22/dw/relu"
type: "ReLU"
bottom: "conv22/dw"
top: "conv22/dw"
}
layer {
name: "conv22"
type: "Convolution"
bottom: "conv22/dw"
top: "conv22"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: true
kernel_size: 1
weight_filler {
type: "msra"
}
}
}

layer {
name: "conv22/bn"
type: "BatchNorm"
bottom: "conv22"
top: "conv22"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv22/scale"
type: "Scale"
bottom: "conv22"
top: "conv22"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}

layer {
name: "conv22/relu"
type: "ReLU"
bottom: "conv22"
top: "conv22"
}
layer {
name: "conv23/dw"
type: "DepthwiseConvolution"
bottom: "conv22"
top: "conv23/dw"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 1024
bias_term: true
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}

layer {
name: "conv23/dw/bn"
type: "BatchNorm"
bottom: "conv23/dw"
top: "conv23/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv23/dw/scale"
type: "Scale"
bottom: "conv23/dw"
top: "conv23/dw"
param {
lr_mult: 1
decay_mult: 0.0
}
param {
lr_mult: 2
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv23/dw/relu"
type: "ReLU"
bottom: "conv23/dw"
top: "conv23/dw"
}

layer {
name: "conv23"
type: "Convolution"
bottom: "conv23/dw"
top: "conv23"
param {
lr_mult: 0.1
decay_mult: 0.1
}
convolution_param {
num_output: 75
bias_term: true
kernel_size: 1
weight_filler {
type: "msra"
}
}
}

layer {
name: "conv20_old"
type: "Convolution"
bottom: "conv20_new"
top: "conv20_old"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 75
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
value: 0
}
}
}

layer {
name: "Yolov3Loss1"
type: "Yolov3"
bottom: "conv23"
bottom: "label"
top: "det_loss1"
loss_weight: 1
yolov3_param {
side: 13
num_class: 20
num: 3
object_scale: 5.0
noobject_scale: 1.0
class_scale: 1.0
coord_scale: 1.0
thresh: 0.6
anchors_scale : 64
use_logic_gradient : false
#10,14, 23,27, 37,58, 81,82, 135,169, 344,319
biases: 34
biases: 43
biases: 66
biases: 51
biases: 54
biases: 76
biases: 183
biases: 84
biases: 128
biases: 142
biases: 317
biases: 270
biases: 77
biases: 85
biases: 85
biases: 104
biases: 100
biases: 116

mask:3
mask:4
mask:5
}
}
layer {
name: "Yolov3Loss2"
type: "Yolov3"
bottom: "conv21"
bottom: "label"
top: "det_loss2"
loss_weight: 1
yolov3_param {
side: 26
num_class: 20
num: 3
object_scale: 5.0
noobject_scale: 1.0
class_scale: 1.0
coord_scale: 1.0
thresh: 0.6
anchors_scale : 16
use_logic_gradient : false
#10,14, 23,27, 37,58, 81,82, 135,169, 344,319
biases: 34
biases: 43
biases: 66
biases: 51
biases: 54
biases: 76
biases: 183
biases: 84
biases: 128
biases: 142
biases: 317
biases: 270
biases: 77
biases: 85
biases: 85
biases: 104
biases: 100
biases: 116

mask:0
mask:1
mask:2
}
}

layer {
name: "Yolov3Loss3"
type: "Yolov3"
bottom: "conv20_old"
bottom: "label"
top: "det_loss3"
loss_weight: 1
yolov3_param {
side: 13
num_class: 20
num: 3
object_scale: 5.0
noobject_scale: 1.0
class_scale: 1.0
coord_scale: 1.0
thresh: 0.6
anchors_scale : 32
use_logic_gradient : false
#10,14, 23,27, 37,58, 81,82, 135,169, 344,319
biases: 34
biases: 43
biases: 66
biases: 51
biases: 54
biases: 76
biases: 183
biases: 84
biases: 128
biases: 142
biases: 317
biases: 270
biases: 77
biases: 85
biases: 85
biases: 104
biases: 100
biases: 116
mask:6
mask:7
mask:8
}
}

请问下,为什么会出现这种情况?
如果我想要在1280*1280分辨率下正确检测出该目标,应该怎么做?

@yiran-THU
Copy link
Author

yiran-THU commented Dec 4, 2019

@eric612

Anchor box是按照1280的分辨率计算的,大佬能否指点一二,谢谢!

@eric612
Copy link
Owner

eric612 commented Dec 5, 2019

不太理解,方便上傳log 嗎

@yiran-THU
Copy link
Author

@eric612

我今天做了测试,构建了一个训练集,里面只有上述测试中漏检的目标,然后在1280*1280的分辨率下训练,结果能检测出之前漏检的那类目标。

今天我打算在之前的训练集内大量加入漏检目标数据(相同图像复制的方式),然后训练,log明天白天上传。

我比较奇怪的是,相同数量和比例数据的训练集,为什么在832832的分辨率下一切正常,而在12801280的分辨率下却一个都没检测出来!


我今天做了測試,構建了壹個訓練集,裏面只有上述測試中漏檢的目標,然後在1280*1280的分辨率下訓練,結果能檢測出之前漏檢的那類目標。

今天我打算在之前的訓練集內大量加入漏檢目標數據(相同圖像復制的方式),然後訓練,log明天白天上傳。

我比較奇怪的是,相同數量和比例數據的訓練集,為什麽在832832的分辨率下壹切正常,而在12801280的分辨率下卻壹個都沒檢測出來!

@yiran-THU
Copy link
Author

yiran-THU commented Dec 6, 2019

train.log

初步训练了下,多加数据后,能框出来,但是置信度特别低,而且框得不准。
为什么在832832下一切正常,而12801280下对该目标就不行呢。

@eric612
Copy link
Owner

eric612 commented Dec 9, 2019

log 看起來沒什麼異常,但裡面沒有anchor的數值和test的結果,方便上傳嗎

@yiran-THU
Copy link
Author

@eric612

我的显存不够,没有在训练的时候做过test。
目前用的anchor数值如下:
biases: 120
biases: 90
biases: 120
biases: 170
biases: 140
biases: 160
biases: 200
biases: 200
biases: 440
biases: 160
biases: 480
biases: 400
biases: 230
biases: 230
biases: 230
biases: 213
biases: 213
biases: 213

mask:3
mask:4
mask:5
mask:0
mask:1
mask:2
mask:6
mask:7
mask:8

anchors_scale:64
anchors_scale:16
anchors_scale:32
mask_group_num:3

@yyqgood
Copy link

yyqgood commented Mar 29, 2020

楼主,你这个问题最终怎么解决的呢?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants