forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensor.go
505 lines (461 loc) · 16 KB
/
tensor.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package tensorflow
// #include <stdlib.h>
// #include <string.h>
// #include "tensorflow/c/c_api.h"
import "C"
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"reflect"
"runtime"
"unsafe"
)
// DataType holds the type for a scalar value. E.g., one slot in a tensor.
type DataType C.TF_DataType
// Types of scalar values in the TensorFlow type system.
const (
Float DataType = C.TF_FLOAT
Double DataType = C.TF_DOUBLE
Int32 DataType = C.TF_INT32
Uint32 DataType = C.TF_UINT32
Uint8 DataType = C.TF_UINT8
Int16 DataType = C.TF_INT16
Int8 DataType = C.TF_INT8
String DataType = C.TF_STRING
Complex64 DataType = C.TF_COMPLEX64
Complex DataType = C.TF_COMPLEX
Int64 DataType = C.TF_INT64
Uint64 DataType = C.TF_UINT64
Bool DataType = C.TF_BOOL
Qint8 DataType = C.TF_QINT8
Quint8 DataType = C.TF_QUINT8
Qint32 DataType = C.TF_QINT32
Bfloat16 DataType = C.TF_BFLOAT16
Qint16 DataType = C.TF_QINT16
Quint16 DataType = C.TF_QUINT16
Uint16 DataType = C.TF_UINT16
Complex128 DataType = C.TF_COMPLEX128
Half DataType = C.TF_HALF
)
// Tensor holds a multi-dimensional array of elements of a single data type.
type Tensor struct {
c *C.TF_Tensor
shape []int64
}
// NewTensor converts from a Go value to a Tensor. Valid values are scalars,
// slices, and arrays. Every element of a slice must have the same length so
// that the resulting Tensor has a valid shape.
func NewTensor(value interface{}) (*Tensor, error) {
val := reflect.ValueOf(value)
shape, dataType, err := shapeAndDataTypeOf(val)
if err != nil {
return nil, err
}
nflattened := numElements(shape)
nbytes := typeOf(dataType, nil).Size() * uintptr(nflattened)
if dataType == String {
// TF_STRING tensors are encoded as an array of 8-byte offsets
// followed by string data. See c_api.h.
nbytes = uintptr(nflattened*8) + byteSizeOfEncodedStrings(value)
}
var shapePtr *C.int64_t
if len(shape) > 0 {
shapePtr = (*C.int64_t)(unsafe.Pointer(&shape[0]))
}
t := &Tensor{
c: C.TF_AllocateTensor(C.TF_DataType(dataType), shapePtr, C.int(len(shape)), C.size_t(nbytes)),
shape: shape,
}
runtime.SetFinalizer(t, (*Tensor).finalize)
raw := tensorData(t.c)
buf := bytes.NewBuffer(raw[:0:len(raw)])
if dataType != String {
if err := encodeTensor(buf, val, shape); err != nil {
return nil, err
}
if uintptr(buf.Len()) != nbytes {
return nil, bug("NewTensor incorrectly calculated the size of a tensor with type %v and shape %v as %v bytes instead of %v", dataType, shape, nbytes, buf.Len())
}
} else {
e := stringEncoder{offsets: buf, data: raw[nflattened*8:], status: newStatus()}
if err := e.encode(reflect.ValueOf(value), shape); err != nil {
return nil, err
}
if int64(buf.Len()) != nflattened*8 {
return nil, bug("invalid offset encoding for TF_STRING tensor with shape %v (got %v, want %v)", shape, buf.Len(), nflattened*8)
}
}
return t, nil
}
// ReadTensor constructs a Tensor with the provided type and shape from the
// serialized tensor contents in r.
//
// See also WriteContentsTo.
func ReadTensor(dataType DataType, shape []int64, r io.Reader) (*Tensor, error) {
if err := isTensorSerializable(dataType); err != nil {
return nil, err
}
nbytes := typeOf(dataType, nil).Size() * uintptr(numElements(shape))
var shapePtr *C.int64_t
if len(shape) > 0 {
shapePtr = (*C.int64_t)(unsafe.Pointer(&shape[0]))
}
t := &Tensor{
c: C.TF_AllocateTensor(C.TF_DataType(dataType), shapePtr, C.int(len(shape)), C.size_t(nbytes)),
shape: shape,
}
runtime.SetFinalizer(t, (*Tensor).finalize)
raw := tensorData(t.c)
if _, err := io.ReadFull(r, raw); err != nil {
return nil, err
}
return t, nil
}
// newTensorFromC takes ownership of c and returns the owning Tensor.
func newTensorFromC(c *C.TF_Tensor) *Tensor {
var shape []int64
if ndims := int(C.TF_NumDims(c)); ndims > 0 {
shape = make([]int64, ndims)
}
for i := range shape {
shape[i] = int64(C.TF_Dim(c, C.int(i)))
}
t := &Tensor{c: c, shape: shape}
runtime.SetFinalizer(t, (*Tensor).finalize)
return t
}
func (t *Tensor) finalize() { C.TF_DeleteTensor(t.c) }
// DataType returns the scalar datatype of the Tensor.
func (t *Tensor) DataType() DataType { return DataType(C.TF_TensorType(t.c)) }
// Shape returns the shape of the Tensor.
func (t *Tensor) Shape() []int64 { return t.shape }
// Value converts the Tensor to a Go value. For now, not all Tensor types are
// supported, and this function may panic if it encounters an unsupported
// DataType.
//
// The type of the output depends on the Tensor type and dimensions.
// For example:
// Tensor(int64, 0): int64
// Tensor(float64, 3): [][][]float64
func (t *Tensor) Value() interface{} {
typ := typeOf(t.DataType(), t.Shape())
val := reflect.New(typ)
raw := tensorData(t.c)
if t.DataType() != String {
if err := decodeTensor(bytes.NewReader(raw), t.Shape(), typ, val); err != nil {
panic(bug("unable to decode Tensor of type %v and shape %v - %v", t.DataType(), t.Shape(), err))
}
} else {
nflattened := numElements(t.Shape())
d := stringDecoder{offsets: bytes.NewReader(raw[0 : 8*nflattened]), data: raw[8*nflattened:], status: newStatus()}
if err := d.decode(val, t.Shape()); err != nil {
panic(bug("unable to decode String tensor with shape %v - %v", t.Shape(), err))
}
}
return reflect.Indirect(val).Interface()
}
// WriteContentsTo writes the serialized contents of t to w.
//
// Returns the number of bytes written. See ReadTensor for
// reconstructing a Tensor from the serialized form.
//
// WARNING: WriteContentsTo is not comprehensive and will fail
// if t.DataType() is non-numeric (e.g., String). See
// https://github.com/tensorflow/tensorflow/issues/6003.
func (t *Tensor) WriteContentsTo(w io.Writer) (int64, error) {
if err := isTensorSerializable(t.DataType()); err != nil {
return 0, err
}
return io.Copy(w, bytes.NewReader(tensorData(t.c)))
}
func tensorData(c *C.TF_Tensor) []byte {
// See: https://github.com/golang/go/wiki/cgo#turning-c-arrays-into-go-slices
cbytes := C.TF_TensorData(c)
if cbytes == nil {
return nil
}
length := int(C.TF_TensorByteSize(c))
slice := (*[1 << 30]byte)(unsafe.Pointer(cbytes))[:length:length]
return slice
}
var types = []struct {
typ reflect.Type
dataType C.TF_DataType
}{
{reflect.TypeOf(float32(0)), C.TF_FLOAT},
{reflect.TypeOf(float64(0)), C.TF_DOUBLE},
{reflect.TypeOf(int32(0)), C.TF_INT32},
{reflect.TypeOf(uint32(0)), C.TF_UINT32},
{reflect.TypeOf(uint8(0)), C.TF_UINT8},
{reflect.TypeOf(int16(0)), C.TF_INT16},
{reflect.TypeOf(int8(0)), C.TF_INT8},
{reflect.TypeOf(""), C.TF_STRING},
{reflect.TypeOf(complex(float32(0), float32(0))), C.TF_COMPLEX64},
{reflect.TypeOf(int64(0)), C.TF_INT64},
{reflect.TypeOf(uint64(0)), C.TF_UINT64},
{reflect.TypeOf(false), C.TF_BOOL},
{reflect.TypeOf(uint16(0)), C.TF_UINT16},
{reflect.TypeOf(complex(float64(0), float64(0))), C.TF_COMPLEX128},
// TODO(apassos): support DT_RESOURCE representation in go.
// TODO(keveman): support DT_VARIANT representation in go.
}
// shapeAndDataTypeOf returns the data type and shape of the Tensor
// corresponding to a Go type.
func shapeAndDataTypeOf(val reflect.Value) (shape []int64, dt DataType, err error) {
typ := val.Type()
for typ.Kind() == reflect.Array || typ.Kind() == reflect.Slice {
shape = append(shape, int64(val.Len()))
if val.Len() > 0 {
// In order to check tensor structure properly in general case we need to iterate over all slices of the tensor to check sizes match
// Since we already going to iterate over all elements in encodeTensor() let's
// 1) do the actual check in encodeTensor() to save some cpu cycles here
// 2) assume the shape is represented by lengths of elements with zero index in each dimension
val = val.Index(0)
}
typ = typ.Elem()
}
for _, t := range types {
if typ.Kind() == t.typ.Kind() {
return shape, DataType(t.dataType), nil
}
}
return shape, dt, fmt.Errorf("unsupported type %v", typ)
}
// typeOf converts from a DataType and Shape to the equivalent Go type.
func typeOf(dt DataType, shape []int64) reflect.Type {
var ret reflect.Type
for _, t := range types {
if dt == DataType(t.dataType) {
ret = t.typ
break
}
}
if ret == nil {
panic(bug("DataType %v is not supported (see https://www.tensorflow.org/code/tensorflow/core/framework/types.proto)", dt))
}
for range shape {
ret = reflect.SliceOf(ret)
}
return ret
}
func numElements(shape []int64) int64 {
n := int64(1)
for _, d := range shape {
n *= d
}
return n
}
// byteSizeOfEncodedStrings returns the size of the encoded strings in val.
// val MUST be a string, or a container (array/slice etc.) of strings.
func byteSizeOfEncodedStrings(val interface{}) uintptr {
if s, ok := val.(string); ok {
return uintptr(C.TF_StringEncodedSize(C.size_t(len(s))))
}
// Otherwise must be an array or slice.
var size uintptr
v := reflect.ValueOf(val)
for i := 0; i < v.Len(); i++ {
size += byteSizeOfEncodedStrings(v.Index(i).Interface())
}
return size
}
// encodeTensor writes v to the specified buffer using the format specified in
// c_api.h. Use stringEncoder for String tensors.
func encodeTensor(w *bytes.Buffer, v reflect.Value, shape []int64) error {
switch v.Kind() {
case reflect.Bool:
b := byte(0)
if v.Bool() {
b = 1
}
if err := w.WriteByte(b); err != nil {
return err
}
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
if err := binary.Write(w, nativeEndian, v.Interface()); err != nil {
return err
}
case reflect.Array, reflect.Slice:
// If current dimension is a slice, verify that it has the expected size
// Go's type system makes that guarantee for arrays.
if v.Kind() == reflect.Slice {
expected := int(shape[0])
if v.Len() != expected {
return fmt.Errorf("mismatched slice lengths: %d and %d", v.Len(), expected)
}
}
// Optimisation: if only one dimension is left we can use binary.Write() directly for this slice
if len(shape) == 1 && v.Len() > 0 {
switch v.Index(0).Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
return binary.Write(w, nativeEndian, v.Interface())
}
}
subShape := shape[1:]
for i := 0; i < v.Len(); i++ {
err := encodeTensor(w, v.Index(i), subShape)
if err != nil {
return err
}
}
default:
return fmt.Errorf("unsupported type %v", v.Type())
}
return nil
}
// decodeTensor decodes the Tensor from the buffer to ptr using the format
// specified in c_api.h. Use stringDecoder for String tensors.
func decodeTensor(r *bytes.Reader, shape []int64, typ reflect.Type, ptr reflect.Value) error {
switch typ.Kind() {
case reflect.Bool:
b, err := r.ReadByte()
if err != nil {
return err
}
ptr.Elem().SetBool(b == 1)
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
if err := binary.Read(r, nativeEndian, ptr.Interface()); err != nil {
return err
}
case reflect.Slice:
val := reflect.Indirect(ptr)
val.Set(reflect.MakeSlice(typ, int(shape[0]), int(shape[0])))
// Optimization: if only one dimension is left we can use binary.Read() directly for this slice
if len(shape) == 1 && val.Len() > 0 {
switch val.Index(0).Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
return binary.Read(r, nativeEndian, val.Interface())
}
}
for i := 0; i < val.Len(); i++ {
if err := decodeTensor(r, shape[1:], typ.Elem(), val.Index(i).Addr()); err != nil {
return err
}
}
default:
return fmt.Errorf("unsupported type %v", typ)
}
return nil
}
type stringEncoder struct {
offsets io.Writer
data []byte
offset uint64
status *status
}
func (e *stringEncoder) encode(v reflect.Value, shape []int64) error {
if v.Kind() == reflect.String {
if err := binary.Write(e.offsets, nativeEndian, e.offset); err != nil {
return err
}
var (
s = v.Interface().(string)
src = C.CString(s)
srcLen = C.size_t(len(s))
dst = (*C.char)(unsafe.Pointer(&e.data[e.offset]))
dstLen = C.size_t(uint64(len(e.data)) - e.offset)
)
e.offset += uint64(C.TF_StringEncode(src, srcLen, dst, dstLen, e.status.c))
C.free(unsafe.Pointer(src))
return e.status.Err()
}
if v.Kind() == reflect.Slice {
expected := int(shape[0])
if v.Len() != expected {
return fmt.Errorf("mismatched slice lengths: %d and %d", v.Len(), expected)
}
}
subShape := shape[1:]
for i := 0; i < v.Len(); i++ {
if err := e.encode(v.Index(i), subShape); err != nil {
return err
}
}
return nil
}
type stringDecoder struct {
offsets io.Reader
data []byte
status *status
}
func (d *stringDecoder) decode(ptr reflect.Value, shape []int64) error {
if len(shape) == 0 {
var offset uint64
if err := binary.Read(d.offsets, nativeEndian, &offset); err != nil {
return err
}
var (
src = (*C.char)(unsafe.Pointer(&d.data[offset]))
srcLen = C.size_t(len(d.data)) - C.size_t(offset)
dst *C.char
dstLen C.size_t
)
if offset > uint64(len(d.data)) {
return fmt.Errorf("invalid offsets in String Tensor")
}
C.TF_StringDecode(src, srcLen, &dst, &dstLen, d.status.c)
if err := d.status.Err(); err != nil {
return err
}
s := ptr.Interface().(*string)
*s = C.GoStringN(dst, C.int(dstLen))
return nil
}
val := reflect.Indirect(ptr)
val.Set(reflect.MakeSlice(typeOf(String, shape), int(shape[0]), int(shape[0])))
for i := 0; i < val.Len(); i++ {
if err := d.decode(val.Index(i).Addr(), shape[1:]); err != nil {
return err
}
}
return nil
}
func bug(format string, args ...interface{}) error {
return fmt.Errorf("BUG: Please report at https://github.com/tensorflow/tensorflow/issues with the note: Go TensorFlow %v: %v", Version(), fmt.Sprintf(format, args...))
}
func isTensorSerializable(dataType DataType) error {
// For numeric types, the serialized Tensor matches the in-memory
// representation. See the implementation of Tensor::AsProtoContent in
// https://www.tensorflow.org/code/tensorflow/core/framework/tensor.cc
//
// The more appropriate way to be in sync with Tensor::AsProtoContent
// would be to have the TensorFlow C library export functions for
// serialization and deserialization of Tensors. Till then capitalize
// on knowledge of the implementation for numeric types.
switch dataType {
case Float, Double, Int32, Uint8, Int16, Int8, Complex, Int64, Bool, Quint8, Qint32, Bfloat16, Qint16, Quint16, Uint16, Complex128, Half:
return nil
default:
return fmt.Errorf("serialization of tensors with the DataType %d is not yet supported, see https://github.com/tensorflow/tensorflow/issues/6003", dataType)
}
}
// nativeEndian is the byte order for the local platform. Used to send back and
// forth Tensors with the C API. We test for endianness at runtime because
// some architectures can be booted into different endian modes.
var nativeEndian binary.ByteOrder
func init() {
buf := [2]byte{}
*(*uint16)(unsafe.Pointer(&buf[0])) = uint16(0xABCD)
switch buf {
case [2]byte{0xCD, 0xAB}:
nativeEndian = binary.LittleEndian
case [2]byte{0xAB, 0xCD}:
nativeEndian = binary.BigEndian
default:
panic("Could not determine native endianness.")
}
}