forked from k3s-io/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predicates.go
1619 lines (1447 loc) · 64.3 KB
/
predicates.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package predicates
import (
"errors"
"fmt"
"os"
"strconv"
"sync"
"k8s.io/api/core/v1"
storagev1 "k8s.io/api/storage/v1"
apierrors "k8s.io/apimachinery/pkg/api/errors"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/labels"
"k8s.io/apimachinery/pkg/util/rand"
"k8s.io/apimachinery/pkg/util/sets"
utilfeature "k8s.io/apiserver/pkg/util/feature"
corelisters "k8s.io/client-go/listers/core/v1"
storagelisters "k8s.io/client-go/listers/storage/v1"
"k8s.io/client-go/util/workqueue"
v1helper "k8s.io/kubernetes/pkg/apis/core/v1/helper"
v1qos "k8s.io/kubernetes/pkg/apis/core/v1/helper/qos"
"k8s.io/kubernetes/pkg/features"
kubeletapis "k8s.io/kubernetes/pkg/kubelet/apis"
"k8s.io/kubernetes/pkg/scheduler/algorithm"
priorityutil "k8s.io/kubernetes/pkg/scheduler/algorithm/priorities/util"
"k8s.io/kubernetes/pkg/scheduler/schedulercache"
schedutil "k8s.io/kubernetes/pkg/scheduler/util"
"k8s.io/kubernetes/pkg/scheduler/volumebinder"
volumeutil "k8s.io/kubernetes/pkg/volume/util"
"github.com/golang/glog"
)
const (
// MatchInterPodAffinityPred defines the name of predicate MatchInterPodAffinity.
MatchInterPodAffinityPred = "MatchInterPodAffinity"
// CheckVolumeBindingPred defines the name of predicate CheckVolumeBinding.
CheckVolumeBindingPred = "CheckVolumeBinding"
// CheckNodeConditionPred defines the name of predicate CheckNodeCondition.
CheckNodeConditionPred = "CheckNodeCondition"
// GeneralPred defines the name of predicate GeneralPredicates.
GeneralPred = "GeneralPredicates"
// HostNamePred defines the name of predicate HostName.
HostNamePred = "HostName"
// PodFitsHostPortsPred defines the name of predicate PodFitsHostPorts.
PodFitsHostPortsPred = "PodFitsHostPorts"
// MatchNodeSelectorPred defines the name of predicate MatchNodeSelector.
MatchNodeSelectorPred = "MatchNodeSelector"
// PodFitsResourcesPred defines the name of predicate PodFitsResources.
PodFitsResourcesPred = "PodFitsResources"
// NoDiskConflictPred defines the name of predicate NoDiskConflict.
NoDiskConflictPred = "NoDiskConflict"
// PodToleratesNodeTaintsPred defines the name of predicate PodToleratesNodeTaints.
PodToleratesNodeTaintsPred = "PodToleratesNodeTaints"
// CheckNodeUnschedulablePred defines the name of predicate CheckNodeUnschedulablePredicate.
CheckNodeUnschedulablePred = "CheckNodeUnschedulable"
// PodToleratesNodeNoExecuteTaintsPred defines the name of predicate PodToleratesNodeNoExecuteTaints.
PodToleratesNodeNoExecuteTaintsPred = "PodToleratesNodeNoExecuteTaints"
// CheckNodeLabelPresencePred defines the name of predicate CheckNodeLabelPresence.
CheckNodeLabelPresencePred = "CheckNodeLabelPresence"
// CheckServiceAffinityPred defines the name of predicate checkServiceAffinity.
CheckServiceAffinityPred = "CheckServiceAffinity"
// MaxEBSVolumeCountPred defines the name of predicate MaxEBSVolumeCount.
MaxEBSVolumeCountPred = "MaxEBSVolumeCount"
// MaxGCEPDVolumeCountPred defines the name of predicate MaxGCEPDVolumeCount.
MaxGCEPDVolumeCountPred = "MaxGCEPDVolumeCount"
// MaxAzureDiskVolumeCountPred defines the name of predicate MaxAzureDiskVolumeCount.
MaxAzureDiskVolumeCountPred = "MaxAzureDiskVolumeCount"
// NoVolumeZoneConflictPred defines the name of predicate NoVolumeZoneConflict.
NoVolumeZoneConflictPred = "NoVolumeZoneConflict"
// CheckNodeMemoryPressurePred defines the name of predicate CheckNodeMemoryPressure.
CheckNodeMemoryPressurePred = "CheckNodeMemoryPressure"
// CheckNodeDiskPressurePred defines the name of predicate CheckNodeDiskPressure.
CheckNodeDiskPressurePred = "CheckNodeDiskPressure"
// DefaultMaxEBSVolumes is the limit for volumes attached to an instance.
// Amazon recommends no more than 40; the system root volume uses at least one.
// See http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html#linux-specific-volume-limits
DefaultMaxEBSVolumes = 39
// DefaultMaxGCEPDVolumes defines the maximum number of PD Volumes for GCE
// GCE instances can have up to 16 PD volumes attached.
DefaultMaxGCEPDVolumes = 16
// DefaultMaxAzureDiskVolumes defines the maximum number of PD Volumes for Azure
// Larger Azure VMs can actually have much more disks attached.
// TODO We should determine the max based on VM size
DefaultMaxAzureDiskVolumes = 16
// KubeMaxPDVols defines the maximum number of PD Volumes per kubelet
KubeMaxPDVols = "KUBE_MAX_PD_VOLS"
// EBSVolumeFilterType defines the filter name for EBSVolumeFilter.
EBSVolumeFilterType = "EBS"
// GCEPDVolumeFilterType defines the filter name for GCEPDVolumeFilter.
GCEPDVolumeFilterType = "GCE"
// AzureDiskVolumeFilterType defines the filter name for AzureDiskVolumeFilter.
AzureDiskVolumeFilterType = "AzureDisk"
)
// IMPORTANT NOTE for predicate developers:
// We are using cached predicate result for pods belonging to the same equivalence class.
// So when updating an existing predicate, you should consider whether your change will introduce new
// dependency to attributes of any API object like Pod, Node, Service etc.
// If yes, you are expected to invalidate the cached predicate result for related API object change.
// For example:
// https://github.com/kubernetes/kubernetes/blob/36a218e/plugin/pkg/scheduler/factory/factory.go#L422
// IMPORTANT NOTE: this list contains the ordering of the predicates, if you develop a new predicate
// it is mandatory to add its name to this list.
// Otherwise it won't be processed, see generic_scheduler#podFitsOnNode().
// The order is based on the restrictiveness & complexity of predicates.
// Design doc: https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/predicates-ordering.md
var (
predicatesOrdering = []string{CheckNodeConditionPred, CheckNodeUnschedulablePred,
GeneralPred, HostNamePred, PodFitsHostPortsPred,
MatchNodeSelectorPred, PodFitsResourcesPred, NoDiskConflictPred,
PodToleratesNodeTaintsPred, PodToleratesNodeNoExecuteTaintsPred, CheckNodeLabelPresencePred,
CheckServiceAffinityPred, MaxEBSVolumeCountPred, MaxGCEPDVolumeCountPred,
MaxAzureDiskVolumeCountPred, CheckVolumeBindingPred, NoVolumeZoneConflictPred,
CheckNodeMemoryPressurePred, CheckNodeDiskPressurePred, MatchInterPodAffinityPred}
)
// NodeInfo interface represents anything that can get node object from node ID.
type NodeInfo interface {
GetNodeInfo(nodeID string) (*v1.Node, error)
}
// PersistentVolumeInfo interface represents anything that can get persistent volume object by PV ID.
type PersistentVolumeInfo interface {
GetPersistentVolumeInfo(pvID string) (*v1.PersistentVolume, error)
}
// CachedPersistentVolumeInfo implements PersistentVolumeInfo
type CachedPersistentVolumeInfo struct {
corelisters.PersistentVolumeLister
}
// Ordering returns the ordering of predicates.
func Ordering() []string {
return predicatesOrdering
}
// SetPredicatesOrdering sets the ordering of predicates.
func SetPredicatesOrdering(names []string) {
predicatesOrdering = names
}
// GetPersistentVolumeInfo returns a persistent volume object by PV ID.
func (c *CachedPersistentVolumeInfo) GetPersistentVolumeInfo(pvID string) (*v1.PersistentVolume, error) {
return c.Get(pvID)
}
// PersistentVolumeClaimInfo interface represents anything that can get a PVC object in
// specified namespace with specified name.
type PersistentVolumeClaimInfo interface {
GetPersistentVolumeClaimInfo(namespace string, name string) (*v1.PersistentVolumeClaim, error)
}
// CachedPersistentVolumeClaimInfo implements PersistentVolumeClaimInfo
type CachedPersistentVolumeClaimInfo struct {
corelisters.PersistentVolumeClaimLister
}
// GetPersistentVolumeClaimInfo fetches the claim in specified namespace with specified name
func (c *CachedPersistentVolumeClaimInfo) GetPersistentVolumeClaimInfo(namespace string, name string) (*v1.PersistentVolumeClaim, error) {
return c.PersistentVolumeClaims(namespace).Get(name)
}
// CachedNodeInfo implements NodeInfo
type CachedNodeInfo struct {
corelisters.NodeLister
}
// GetNodeInfo returns cached data for the node 'id'.
func (c *CachedNodeInfo) GetNodeInfo(id string) (*v1.Node, error) {
node, err := c.Get(id)
if apierrors.IsNotFound(err) {
return nil, err
}
if err != nil {
return nil, fmt.Errorf("error retrieving node '%v' from cache: %v", id, err)
}
return node, nil
}
// StorageClassInfo interface represents anything that can get a storage class object by class name.
type StorageClassInfo interface {
GetStorageClassInfo(className string) (*storagev1.StorageClass, error)
}
// CachedStorageClassInfo implements StorageClassInfo
type CachedStorageClassInfo struct {
storagelisters.StorageClassLister
}
// GetStorageClassInfo get StorageClass by class name.
func (c *CachedStorageClassInfo) GetStorageClassInfo(className string) (*storagev1.StorageClass, error) {
return c.Get(className)
}
func isVolumeConflict(volume v1.Volume, pod *v1.Pod) bool {
// fast path if there is no conflict checking targets.
if volume.GCEPersistentDisk == nil && volume.AWSElasticBlockStore == nil && volume.RBD == nil && volume.ISCSI == nil {
return false
}
for _, existingVolume := range pod.Spec.Volumes {
// Same GCE disk mounted by multiple pods conflicts unless all pods mount it read-only.
if volume.GCEPersistentDisk != nil && existingVolume.GCEPersistentDisk != nil {
disk, existingDisk := volume.GCEPersistentDisk, existingVolume.GCEPersistentDisk
if disk.PDName == existingDisk.PDName && !(disk.ReadOnly && existingDisk.ReadOnly) {
return true
}
}
if volume.AWSElasticBlockStore != nil && existingVolume.AWSElasticBlockStore != nil {
if volume.AWSElasticBlockStore.VolumeID == existingVolume.AWSElasticBlockStore.VolumeID {
return true
}
}
if volume.ISCSI != nil && existingVolume.ISCSI != nil {
iqn := volume.ISCSI.IQN
eiqn := existingVolume.ISCSI.IQN
// two ISCSI volumes are same, if they share the same iqn. As iscsi volumes are of type
// RWO or ROX, we could permit only one RW mount. Same iscsi volume mounted by multiple Pods
// conflict unless all other pods mount as read only.
if iqn == eiqn && !(volume.ISCSI.ReadOnly && existingVolume.ISCSI.ReadOnly) {
return true
}
}
if volume.RBD != nil && existingVolume.RBD != nil {
mon, pool, image := volume.RBD.CephMonitors, volume.RBD.RBDPool, volume.RBD.RBDImage
emon, epool, eimage := existingVolume.RBD.CephMonitors, existingVolume.RBD.RBDPool, existingVolume.RBD.RBDImage
// two RBDs images are the same if they share the same Ceph monitor, are in the same RADOS Pool, and have the same image name
// only one read-write mount is permitted for the same RBD image.
// same RBD image mounted by multiple Pods conflicts unless all Pods mount the image read-only
if haveOverlap(mon, emon) && pool == epool && image == eimage && !(volume.RBD.ReadOnly && existingVolume.RBD.ReadOnly) {
return true
}
}
}
return false
}
// NoDiskConflict evaluates if a pod can fit due to the volumes it requests, and those that
// are already mounted. If there is already a volume mounted on that node, another pod that uses the same volume
// can't be scheduled there.
// This is GCE, Amazon EBS, and Ceph RBD specific for now:
// - GCE PD allows multiple mounts as long as they're all read-only
// - AWS EBS forbids any two pods mounting the same volume ID
// - Ceph RBD forbids if any two pods share at least same monitor, and match pool and image.
// - ISCSI forbids if any two pods share at least same IQN, LUN and Target
// TODO: migrate this into some per-volume specific code?
func NoDiskConflict(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
for _, v := range pod.Spec.Volumes {
for _, ev := range nodeInfo.Pods() {
if isVolumeConflict(v, ev) {
return false, []algorithm.PredicateFailureReason{ErrDiskConflict}, nil
}
}
}
return true, nil, nil
}
// MaxPDVolumeCountChecker contains information to check the max number of volumes for a predicate.
type MaxPDVolumeCountChecker struct {
filter VolumeFilter
maxVolumes int
pvInfo PersistentVolumeInfo
pvcInfo PersistentVolumeClaimInfo
// The string below is generated randomly during the struct's initialization.
// It is used to prefix volumeID generated inside the predicate() method to
// avoid conflicts with any real volume.
randomVolumeIDPrefix string
}
// VolumeFilter contains information on how to filter PD Volumes when checking PD Volume caps
type VolumeFilter struct {
// Filter normal volumes
FilterVolume func(vol *v1.Volume) (id string, relevant bool)
FilterPersistentVolume func(pv *v1.PersistentVolume) (id string, relevant bool)
}
// NewMaxPDVolumeCountPredicate creates a predicate which evaluates whether a pod can fit based on the
// number of volumes which match a filter that it requests, and those that are already present.
//
// The predicate looks for both volumes used directly, as well as PVC volumes that are backed by relevant volume
// types, counts the number of unique volumes, and rejects the new pod if it would place the total count over
// the maximum.
func NewMaxPDVolumeCountPredicate(filterName string, pvInfo PersistentVolumeInfo, pvcInfo PersistentVolumeClaimInfo) algorithm.FitPredicate {
var filter VolumeFilter
var maxVolumes int
switch filterName {
case EBSVolumeFilterType:
filter = EBSVolumeFilter
maxVolumes = getMaxVols(DefaultMaxEBSVolumes)
case GCEPDVolumeFilterType:
filter = GCEPDVolumeFilter
maxVolumes = getMaxVols(DefaultMaxGCEPDVolumes)
case AzureDiskVolumeFilterType:
filter = AzureDiskVolumeFilter
maxVolumes = getMaxVols(DefaultMaxAzureDiskVolumes)
default:
glog.Fatalf("Wrong filterName, Only Support %v %v %v ", EBSVolumeFilterType,
GCEPDVolumeFilterType, AzureDiskVolumeFilterType)
return nil
}
c := &MaxPDVolumeCountChecker{
filter: filter,
maxVolumes: maxVolumes,
pvInfo: pvInfo,
pvcInfo: pvcInfo,
randomVolumeIDPrefix: rand.String(32),
}
return c.predicate
}
// getMaxVols checks the max PD volumes environment variable, otherwise returning a default value
func getMaxVols(defaultVal int) int {
if rawMaxVols := os.Getenv(KubeMaxPDVols); rawMaxVols != "" {
if parsedMaxVols, err := strconv.Atoi(rawMaxVols); err != nil {
glog.Errorf("Unable to parse maximum PD volumes value, using default of %v: %v", defaultVal, err)
} else if parsedMaxVols <= 0 {
glog.Errorf("Maximum PD volumes must be a positive value, using default of %v", defaultVal)
} else {
return parsedMaxVols
}
}
return defaultVal
}
func (c *MaxPDVolumeCountChecker) filterVolumes(volumes []v1.Volume, namespace string, filteredVolumes map[string]bool) error {
for i := range volumes {
vol := &volumes[i]
if id, ok := c.filter.FilterVolume(vol); ok {
filteredVolumes[id] = true
} else if vol.PersistentVolumeClaim != nil {
pvcName := vol.PersistentVolumeClaim.ClaimName
if pvcName == "" {
return fmt.Errorf("PersistentVolumeClaim had no name")
}
// Until we know real ID of the volume use namespace/pvcName as substitute
// with a random prefix (calculated and stored inside 'c' during initialization)
// to avoid conflicts with existing volume IDs.
pvID := fmt.Sprintf("%s-%s/%s", c.randomVolumeIDPrefix, namespace, pvcName)
pvc, err := c.pvcInfo.GetPersistentVolumeClaimInfo(namespace, pvcName)
if err != nil || pvc == nil {
// if the PVC is not found, log the error and count the PV towards the PV limit
glog.V(4).Infof("Unable to look up PVC info for %s/%s, assuming PVC matches predicate when counting limits: %v", namespace, pvcName, err)
filteredVolumes[pvID] = true
continue
}
pvName := pvc.Spec.VolumeName
if pvName == "" {
// PVC is not bound. It was either deleted and created again or
// it was forcefully unbound by admin. The pod can still use the
// original PV where it was bound to -> log the error and count
// the PV towards the PV limit
glog.V(4).Infof("PVC %s/%s is not bound, assuming PVC matches predicate when counting limits", namespace, pvcName)
filteredVolumes[pvID] = true
continue
}
pv, err := c.pvInfo.GetPersistentVolumeInfo(pvName)
if err != nil || pv == nil {
// if the PV is not found, log the error
// and count the PV towards the PV limit
glog.V(4).Infof("Unable to look up PV info for %s/%s/%s, assuming PV matches predicate when counting limits: %v", namespace, pvcName, pvName, err)
filteredVolumes[pvID] = true
continue
}
if id, ok := c.filter.FilterPersistentVolume(pv); ok {
filteredVolumes[id] = true
}
}
}
return nil
}
func (c *MaxPDVolumeCountChecker) predicate(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
// If a pod doesn't have any volume attached to it, the predicate will always be true.
// Thus we make a fast path for it, to avoid unnecessary computations in this case.
if len(pod.Spec.Volumes) == 0 {
return true, nil, nil
}
newVolumes := make(map[string]bool)
if err := c.filterVolumes(pod.Spec.Volumes, pod.Namespace, newVolumes); err != nil {
return false, nil, err
}
// quick return
if len(newVolumes) == 0 {
return true, nil, nil
}
// count unique volumes
existingVolumes := make(map[string]bool)
for _, existingPod := range nodeInfo.Pods() {
if err := c.filterVolumes(existingPod.Spec.Volumes, existingPod.Namespace, existingVolumes); err != nil {
return false, nil, err
}
}
numExistingVolumes := len(existingVolumes)
// filter out already-mounted volumes
for k := range existingVolumes {
if _, ok := newVolumes[k]; ok {
delete(newVolumes, k)
}
}
numNewVolumes := len(newVolumes)
if numExistingVolumes+numNewVolumes > c.maxVolumes {
// violates MaxEBSVolumeCount or MaxGCEPDVolumeCount
return false, []algorithm.PredicateFailureReason{ErrMaxVolumeCountExceeded}, nil
}
return true, nil, nil
}
// EBSVolumeFilter is a VolumeFilter for filtering AWS ElasticBlockStore Volumes
var EBSVolumeFilter = VolumeFilter{
FilterVolume: func(vol *v1.Volume) (string, bool) {
if vol.AWSElasticBlockStore != nil {
return vol.AWSElasticBlockStore.VolumeID, true
}
return "", false
},
FilterPersistentVolume: func(pv *v1.PersistentVolume) (string, bool) {
if pv.Spec.AWSElasticBlockStore != nil {
return pv.Spec.AWSElasticBlockStore.VolumeID, true
}
return "", false
},
}
// GCEPDVolumeFilter is a VolumeFilter for filtering GCE PersistentDisk Volumes
var GCEPDVolumeFilter = VolumeFilter{
FilterVolume: func(vol *v1.Volume) (string, bool) {
if vol.GCEPersistentDisk != nil {
return vol.GCEPersistentDisk.PDName, true
}
return "", false
},
FilterPersistentVolume: func(pv *v1.PersistentVolume) (string, bool) {
if pv.Spec.GCEPersistentDisk != nil {
return pv.Spec.GCEPersistentDisk.PDName, true
}
return "", false
},
}
// AzureDiskVolumeFilter is a VolumeFilter for filtering Azure Disk Volumes
var AzureDiskVolumeFilter = VolumeFilter{
FilterVolume: func(vol *v1.Volume) (string, bool) {
if vol.AzureDisk != nil {
return vol.AzureDisk.DiskName, true
}
return "", false
},
FilterPersistentVolume: func(pv *v1.PersistentVolume) (string, bool) {
if pv.Spec.AzureDisk != nil {
return pv.Spec.AzureDisk.DiskName, true
}
return "", false
},
}
// VolumeZoneChecker contains information to check the volume zone for a predicate.
type VolumeZoneChecker struct {
pvInfo PersistentVolumeInfo
pvcInfo PersistentVolumeClaimInfo
classInfo StorageClassInfo
}
// NewVolumeZonePredicate evaluates if a pod can fit due to the volumes it requests, given
// that some volumes may have zone scheduling constraints. The requirement is that any
// volume zone-labels must match the equivalent zone-labels on the node. It is OK for
// the node to have more zone-label constraints (for example, a hypothetical replicated
// volume might allow region-wide access)
//
// Currently this is only supported with PersistentVolumeClaims, and looks to the labels
// only on the bound PersistentVolume.
//
// Working with volumes declared inline in the pod specification (i.e. not
// using a PersistentVolume) is likely to be harder, as it would require
// determining the zone of a volume during scheduling, and that is likely to
// require calling out to the cloud provider. It seems that we are moving away
// from inline volume declarations anyway.
func NewVolumeZonePredicate(pvInfo PersistentVolumeInfo, pvcInfo PersistentVolumeClaimInfo, classInfo StorageClassInfo) algorithm.FitPredicate {
c := &VolumeZoneChecker{
pvInfo: pvInfo,
pvcInfo: pvcInfo,
classInfo: classInfo,
}
return c.predicate
}
func (c *VolumeZoneChecker) predicate(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
// If a pod doesn't have any volume attached to it, the predicate will always be true.
// Thus we make a fast path for it, to avoid unnecessary computations in this case.
if len(pod.Spec.Volumes) == 0 {
return true, nil, nil
}
node := nodeInfo.Node()
if node == nil {
return false, nil, fmt.Errorf("node not found")
}
nodeConstraints := make(map[string]string)
for k, v := range node.ObjectMeta.Labels {
if k != kubeletapis.LabelZoneFailureDomain && k != kubeletapis.LabelZoneRegion {
continue
}
nodeConstraints[k] = v
}
if len(nodeConstraints) == 0 {
// The node has no zone constraints, so we're OK to schedule.
// In practice, when using zones, all nodes must be labeled with zone labels.
// We want to fast-path this case though.
return true, nil, nil
}
namespace := pod.Namespace
manifest := &(pod.Spec)
for i := range manifest.Volumes {
volume := &manifest.Volumes[i]
if volume.PersistentVolumeClaim != nil {
pvcName := volume.PersistentVolumeClaim.ClaimName
if pvcName == "" {
return false, nil, fmt.Errorf("PersistentVolumeClaim had no name")
}
pvc, err := c.pvcInfo.GetPersistentVolumeClaimInfo(namespace, pvcName)
if err != nil {
return false, nil, err
}
if pvc == nil {
return false, nil, fmt.Errorf("PersistentVolumeClaim was not found: %q", pvcName)
}
pvName := pvc.Spec.VolumeName
if pvName == "" {
if utilfeature.DefaultFeatureGate.Enabled(features.VolumeScheduling) {
scName := pvc.Spec.StorageClassName
if scName != nil && len(*scName) > 0 {
class, _ := c.classInfo.GetStorageClassInfo(*scName)
if class != nil {
if class.VolumeBindingMode == nil {
return false, nil, fmt.Errorf("VolumeBindingMode not set for StorageClass %q", scName)
}
if *class.VolumeBindingMode == storagev1.VolumeBindingWaitForFirstConsumer {
// Skip unbound volumes
continue
}
}
}
}
return false, nil, fmt.Errorf("PersistentVolumeClaim is not bound: %q", pvcName)
}
pv, err := c.pvInfo.GetPersistentVolumeInfo(pvName)
if err != nil {
return false, nil, err
}
if pv == nil {
return false, nil, fmt.Errorf("PersistentVolume not found: %q", pvName)
}
for k, v := range pv.ObjectMeta.Labels {
if k != kubeletapis.LabelZoneFailureDomain && k != kubeletapis.LabelZoneRegion {
continue
}
nodeV, _ := nodeConstraints[k]
volumeVSet, err := volumeutil.LabelZonesToSet(v)
if err != nil {
glog.Warningf("Failed to parse label for %q: %q. Ignoring the label. err=%v. ", k, v, err)
continue
}
if !volumeVSet.Has(nodeV) {
glog.V(10).Infof("Won't schedule pod %q onto node %q due to volume %q (mismatch on %q)", pod.Name, node.Name, pvName, k)
return false, []algorithm.PredicateFailureReason{ErrVolumeZoneConflict}, nil
}
}
}
}
return true, nil, nil
}
// GetResourceRequest returns a *schedulercache.Resource that covers the largest
// width in each resource dimension. Because init-containers run sequentially, we collect
// the max in each dimension iteratively. In contrast, we sum the resource vectors for
// regular containers since they run simultaneously.
//
// Example:
//
// Pod:
// InitContainers
// IC1:
// CPU: 2
// Memory: 1G
// IC2:
// CPU: 2
// Memory: 3G
// Containers
// C1:
// CPU: 2
// Memory: 1G
// C2:
// CPU: 1
// Memory: 1G
//
// Result: CPU: 3, Memory: 3G
func GetResourceRequest(pod *v1.Pod) *schedulercache.Resource {
result := &schedulercache.Resource{}
for _, container := range pod.Spec.Containers {
result.Add(container.Resources.Requests)
}
// take max_resource(sum_pod, any_init_container)
for _, container := range pod.Spec.InitContainers {
for rName, rQuantity := range container.Resources.Requests {
switch rName {
case v1.ResourceMemory:
if mem := rQuantity.Value(); mem > result.Memory {
result.Memory = mem
}
case v1.ResourceEphemeralStorage:
if ephemeralStorage := rQuantity.Value(); ephemeralStorage > result.EphemeralStorage {
result.EphemeralStorage = ephemeralStorage
}
case v1.ResourceCPU:
if cpu := rQuantity.MilliValue(); cpu > result.MilliCPU {
result.MilliCPU = cpu
}
case v1.ResourceNvidiaGPU:
if gpu := rQuantity.Value(); gpu > result.NvidiaGPU {
result.NvidiaGPU = gpu
}
default:
if v1helper.IsScalarResourceName(rName) {
value := rQuantity.Value()
if value > result.ScalarResources[rName] {
result.SetScalar(rName, value)
}
}
}
}
}
return result
}
func podName(pod *v1.Pod) string {
return pod.Namespace + "/" + pod.Name
}
// PodFitsResources checks if a node has sufficient resources, such as cpu, memory, gpu, opaque int resources etc to run a pod.
// First return value indicates whether a node has sufficient resources to run a pod while the second return value indicates the
// predicate failure reasons if the node has insufficient resources to run the pod.
func PodFitsResources(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
node := nodeInfo.Node()
if node == nil {
return false, nil, fmt.Errorf("node not found")
}
var predicateFails []algorithm.PredicateFailureReason
allowedPodNumber := nodeInfo.AllowedPodNumber()
if len(nodeInfo.Pods())+1 > allowedPodNumber {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourcePods, 1, int64(len(nodeInfo.Pods())), int64(allowedPodNumber)))
}
// No extended resources should be ignored by default.
ignoredExtendedResources := sets.NewString()
var podRequest *schedulercache.Resource
if predicateMeta, ok := meta.(*predicateMetadata); ok {
podRequest = predicateMeta.podRequest
if predicateMeta.ignoredExtendedResources != nil {
ignoredExtendedResources = predicateMeta.ignoredExtendedResources
}
} else {
// We couldn't parse metadata - fallback to computing it.
podRequest = GetResourceRequest(pod)
}
if podRequest.MilliCPU == 0 &&
podRequest.Memory == 0 &&
podRequest.NvidiaGPU == 0 &&
podRequest.EphemeralStorage == 0 &&
len(podRequest.ScalarResources) == 0 {
return len(predicateFails) == 0, predicateFails, nil
}
allocatable := nodeInfo.AllocatableResource()
if allocatable.MilliCPU < podRequest.MilliCPU+nodeInfo.RequestedResource().MilliCPU {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceCPU, podRequest.MilliCPU, nodeInfo.RequestedResource().MilliCPU, allocatable.MilliCPU))
}
if allocatable.Memory < podRequest.Memory+nodeInfo.RequestedResource().Memory {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceMemory, podRequest.Memory, nodeInfo.RequestedResource().Memory, allocatable.Memory))
}
if allocatable.NvidiaGPU < podRequest.NvidiaGPU+nodeInfo.RequestedResource().NvidiaGPU {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceNvidiaGPU, podRequest.NvidiaGPU, nodeInfo.RequestedResource().NvidiaGPU, allocatable.NvidiaGPU))
}
if allocatable.EphemeralStorage < podRequest.EphemeralStorage+nodeInfo.RequestedResource().EphemeralStorage {
predicateFails = append(predicateFails, NewInsufficientResourceError(v1.ResourceEphemeralStorage, podRequest.EphemeralStorage, nodeInfo.RequestedResource().EphemeralStorage, allocatable.EphemeralStorage))
}
for rName, rQuant := range podRequest.ScalarResources {
if v1helper.IsExtendedResourceName(rName) {
// If this resource is one of the extended resources that should be
// ignored, we will skip checking it.
if ignoredExtendedResources.Has(string(rName)) {
continue
}
}
if allocatable.ScalarResources[rName] < rQuant+nodeInfo.RequestedResource().ScalarResources[rName] {
predicateFails = append(predicateFails, NewInsufficientResourceError(rName, podRequest.ScalarResources[rName], nodeInfo.RequestedResource().ScalarResources[rName], allocatable.ScalarResources[rName]))
}
}
if glog.V(10) {
if len(predicateFails) == 0 {
// We explicitly don't do glog.V(10).Infof() to avoid computing all the parameters if this is
// not logged. There is visible performance gain from it.
glog.Infof("Schedule Pod %+v on Node %+v is allowed, Node is running only %v out of %v Pods.",
podName(pod), node.Name, len(nodeInfo.Pods()), allowedPodNumber)
}
}
return len(predicateFails) == 0, predicateFails, nil
}
// nodeMatchesNodeSelectorTerms checks if a node's labels satisfy a list of node selector terms,
// terms are ORed, and an empty list of terms will match nothing.
func nodeMatchesNodeSelectorTerms(node *v1.Node, nodeSelectorTerms []v1.NodeSelectorTerm) bool {
for _, req := range nodeSelectorTerms {
nodeSelector, err := v1helper.NodeSelectorRequirementsAsSelector(req.MatchExpressions)
if err != nil {
glog.V(10).Infof("Failed to parse MatchExpressions: %+v, regarding as not match.", req.MatchExpressions)
return false
}
if nodeSelector.Matches(labels.Set(node.Labels)) {
return true
}
}
return false
}
// The pod can only schedule onto nodes that satisfy requirements in both NodeAffinity and nodeSelector.
func podMatchesNodeLabels(pod *v1.Pod, node *v1.Node) bool {
// Check if node.Labels match pod.Spec.NodeSelector.
if len(pod.Spec.NodeSelector) > 0 {
selector := labels.SelectorFromSet(pod.Spec.NodeSelector)
if !selector.Matches(labels.Set(node.Labels)) {
return false
}
}
// 1. nil NodeSelector matches all nodes (i.e. does not filter out any nodes)
// 2. nil []NodeSelectorTerm (equivalent to non-nil empty NodeSelector) matches no nodes
// 3. zero-length non-nil []NodeSelectorTerm matches no nodes also, just for simplicity
// 4. nil []NodeSelectorRequirement (equivalent to non-nil empty NodeSelectorTerm) matches no nodes
// 5. zero-length non-nil []NodeSelectorRequirement matches no nodes also, just for simplicity
// 6. non-nil empty NodeSelectorRequirement is not allowed
nodeAffinityMatches := true
affinity := pod.Spec.Affinity
if affinity != nil && affinity.NodeAffinity != nil {
nodeAffinity := affinity.NodeAffinity
// if no required NodeAffinity requirements, will do no-op, means select all nodes.
// TODO: Replace next line with subsequent commented-out line when implement RequiredDuringSchedulingRequiredDuringExecution.
if nodeAffinity.RequiredDuringSchedulingIgnoredDuringExecution == nil {
// if nodeAffinity.RequiredDuringSchedulingRequiredDuringExecution == nil && nodeAffinity.RequiredDuringSchedulingIgnoredDuringExecution == nil {
return true
}
// Match node selector for requiredDuringSchedulingRequiredDuringExecution.
// TODO: Uncomment this block when implement RequiredDuringSchedulingRequiredDuringExecution.
// if nodeAffinity.RequiredDuringSchedulingRequiredDuringExecution != nil {
// nodeSelectorTerms := nodeAffinity.RequiredDuringSchedulingRequiredDuringExecution.NodeSelectorTerms
// glog.V(10).Infof("Match for RequiredDuringSchedulingRequiredDuringExecution node selector terms %+v", nodeSelectorTerms)
// nodeAffinityMatches = nodeMatchesNodeSelectorTerms(node, nodeSelectorTerms)
// }
// Match node selector for requiredDuringSchedulingIgnoredDuringExecution.
if nodeAffinity.RequiredDuringSchedulingIgnoredDuringExecution != nil {
nodeSelectorTerms := nodeAffinity.RequiredDuringSchedulingIgnoredDuringExecution.NodeSelectorTerms
glog.V(10).Infof("Match for RequiredDuringSchedulingIgnoredDuringExecution node selector terms %+v", nodeSelectorTerms)
nodeAffinityMatches = nodeAffinityMatches && nodeMatchesNodeSelectorTerms(node, nodeSelectorTerms)
}
}
return nodeAffinityMatches
}
// PodMatchNodeSelector checks if a pod node selector matches the node label.
func PodMatchNodeSelector(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
node := nodeInfo.Node()
if node == nil {
return false, nil, fmt.Errorf("node not found")
}
if podMatchesNodeLabels(pod, node) {
return true, nil, nil
}
return false, []algorithm.PredicateFailureReason{ErrNodeSelectorNotMatch}, nil
}
// PodFitsHost checks if a pod spec node name matches the current node.
func PodFitsHost(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
if len(pod.Spec.NodeName) == 0 {
return true, nil, nil
}
node := nodeInfo.Node()
if node == nil {
return false, nil, fmt.Errorf("node not found")
}
if pod.Spec.NodeName == node.Name {
return true, nil, nil
}
return false, []algorithm.PredicateFailureReason{ErrPodNotMatchHostName}, nil
}
// NodeLabelChecker contains information to check node labels for a predicate.
type NodeLabelChecker struct {
labels []string
presence bool
}
// NewNodeLabelPredicate creates a predicate which evaluates whether a pod can fit based on the
// node labels which match a filter that it requests.
func NewNodeLabelPredicate(labels []string, presence bool) algorithm.FitPredicate {
labelChecker := &NodeLabelChecker{
labels: labels,
presence: presence,
}
return labelChecker.CheckNodeLabelPresence
}
// CheckNodeLabelPresence checks whether all of the specified labels exists on a node or not, regardless of their value
// If "presence" is false, then returns false if any of the requested labels matches any of the node's labels,
// otherwise returns true.
// If "presence" is true, then returns false if any of the requested labels does not match any of the node's labels,
// otherwise returns true.
//
// Consider the cases where the nodes are placed in regions/zones/racks and these are identified by labels
// In some cases, it is required that only nodes that are part of ANY of the defined regions/zones/racks be selected
//
// Alternately, eliminating nodes that have a certain label, regardless of value, is also useful
// A node may have a label with "retiring" as key and the date as the value
// and it may be desirable to avoid scheduling new pods on this node
func (n *NodeLabelChecker) CheckNodeLabelPresence(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
node := nodeInfo.Node()
if node == nil {
return false, nil, fmt.Errorf("node not found")
}
var exists bool
nodeLabels := labels.Set(node.Labels)
for _, label := range n.labels {
exists = nodeLabels.Has(label)
if (exists && !n.presence) || (!exists && n.presence) {
return false, []algorithm.PredicateFailureReason{ErrNodeLabelPresenceViolated}, nil
}
}
return true, nil, nil
}
// ServiceAffinity defines a struct used for create service affinity predicates.
type ServiceAffinity struct {
podLister algorithm.PodLister
serviceLister algorithm.ServiceLister
nodeInfo NodeInfo
labels []string
}
// serviceAffinityMetadataProducer should be run once by the scheduler before looping through the Predicate. It is a helper function that
// only should be referenced by NewServiceAffinityPredicate.
func (s *ServiceAffinity) serviceAffinityMetadataProducer(pm *predicateMetadata) {
if pm.pod == nil {
glog.Errorf("Cannot precompute service affinity, a pod is required to calculate service affinity.")
return
}
pm.serviceAffinityInUse = true
var errSvc, errList error
// Store services which match the pod.
pm.serviceAffinityMatchingPodServices, errSvc = s.serviceLister.GetPodServices(pm.pod)
selector := CreateSelectorFromLabels(pm.pod.Labels)
allMatches, errList := s.podLister.List(selector)
// In the future maybe we will return them as part of the function.
if errSvc != nil || errList != nil {
glog.Errorf("Some Error were found while precomputing svc affinity: \nservices:%v , \npods:%v", errSvc, errList)
}
// consider only the pods that belong to the same namespace
pm.serviceAffinityMatchingPodList = FilterPodsByNamespace(allMatches, pm.pod.Namespace)
}
// NewServiceAffinityPredicate creates a ServiceAffinity.
func NewServiceAffinityPredicate(podLister algorithm.PodLister, serviceLister algorithm.ServiceLister, nodeInfo NodeInfo, labels []string) (algorithm.FitPredicate, PredicateMetadataProducer) {
affinity := &ServiceAffinity{
podLister: podLister,
serviceLister: serviceLister,
nodeInfo: nodeInfo,
labels: labels,
}
return affinity.checkServiceAffinity, affinity.serviceAffinityMetadataProducer
}
// checkServiceAffinity is a predicate which matches nodes in such a way to force that
// ServiceAffinity.labels are homogenous for pods that are scheduled to a node.
// (i.e. it returns true IFF this pod can be added to this node such that all other pods in
// the same service are running on nodes with the exact same ServiceAffinity.label values).
//
// For example:
// If the first pod of a service was scheduled to a node with label "region=foo",
// all the other subsequent pods belong to the same service will be schedule on
// nodes with the same "region=foo" label.
//
// Details:
//
// If (the svc affinity labels are not a subset of pod's label selectors )
// The pod has all information necessary to check affinity, the pod's label selector is sufficient to calculate
// the match.
// Otherwise:
// Create an "implicit selector" which guarantees pods will land on nodes with similar values
// for the affinity labels.
//
// To do this, we "reverse engineer" a selector by introspecting existing pods running under the same service+namespace.
// These backfilled labels in the selector "L" are defined like so:
// - L is a label that the ServiceAffinity object needs as a matching constraints.
// - L is not defined in the pod itself already.
// - and SOME pod, from a service, in the same namespace, ALREADY scheduled onto a node, has a matching value.
//
// WARNING: This Predicate is NOT guaranteed to work if some of the predicateMetadata data isn't precomputed...
// For that reason it is not exported, i.e. it is highly coupled to the implementation of the FitPredicate construction.
func (s *ServiceAffinity) checkServiceAffinity(pod *v1.Pod, meta algorithm.PredicateMetadata, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {
var services []*v1.Service
var pods []*v1.Pod
if pm, ok := meta.(*predicateMetadata); ok && (pm.serviceAffinityMatchingPodList != nil || pm.serviceAffinityMatchingPodServices != nil) {
services = pm.serviceAffinityMatchingPodServices
pods = pm.serviceAffinityMatchingPodList
} else {
// Make the predicate resilient in case metadata is missing.
pm = &predicateMetadata{pod: pod}
s.serviceAffinityMetadataProducer(pm)
pods, services = pm.serviceAffinityMatchingPodList, pm.serviceAffinityMatchingPodServices
}
filteredPods := nodeInfo.FilterOutPods(pods)
node := nodeInfo.Node()
if node == nil {
return false, nil, fmt.Errorf("node not found")
}
// check if the pod being scheduled has the affinity labels specified in its NodeSelector
affinityLabels := FindLabelsInSet(s.labels, labels.Set(pod.Spec.NodeSelector))
// Step 1: If we don't have all constraints, introspect nodes to find the missing constraints.
if len(s.labels) > len(affinityLabels) {