Skip to content
forked from modestyachts/ARS

An implementation of the Augmented Random Search algorithm

License

Notifications You must be signed in to change notification settings

erwincoumans/ARS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Augmented Random Search (ARS)

ARS is a random search method for training linear or fully connected neural network policies for continuous control problems, based on the paper "Simple random search provides a competitive approach to reinforcement learning."

Prerequisites for running ARS

Our ARS implementation relies on Python 3, OpenAI Gym, PyBullet and the Ray library for parallel computing.

To install OpenAI Gym follow the instructions here: https://github.com/openai/gym

To install PyBullet, use:

pip install pybullet

To install Ray execute:

pip install ray

For more information on Ray see http://ray.readthedocs.io/en/latest/.

Install this repo using pip or clone using git:

pip install arspb

Running ARS

First start Ray by executing a command of the following form:

ray start --head

or

ray start --head --redis-port=6379 --num-workers=18

This command starts multiple Python processes on one machine for parallel computations with Ray. Set "num_workers=X" for parallelizing ARS across X CPUs. For parallelzing ARS on a cluster follow the instructions here: http://ray.readthedocs.io/en/latest/using-ray-on-a-large-cluster.html.

We recommend using single threaded linear algebra computations by setting:

export MKL_NUM_THREADS=1

To train a policy for InvertedPendulumSwingupBulletEnv-v0, execute the following command:

python arspb/ars.py

All arguments passed into ARS are optional and can be modified to train other environments, use different hyperparameters, or use different random seeds. For example, to train a policy for InvertedPendulumSwingupBulletEnv-v0, execute the following command:

python arspb/ars.py --env_name InvertedPendulumSwingupBulletEnv-v0 --policy_type=linear --n_directions 230 --deltas_used 230 --step_size 0.02 --delta_std 0.0075 --n_workers 48 --shift 5

You can also train a fully connected neural network, specifying the sizes of the hidden layers, as follows:

python arspb/ars.py --env_name AntBulletEnv-v0 --policy_type=nn --policy_network_size=128,64 --n_directions 230 --deltas_used 230 --step_size 0.02 --delta_std 0.0075 --n_workers 48 --shift 5

By default, the activation function is tanh, you can also select clip, by adding this argument:

--activation=clip

Rendering Trained Policy

First run a PyBullet GUI window using the following command:

python -m pybullet_utils.runServer

When running a gym environment, it will automatically connect to this GUI window over shared memory.

To render a trained policy, execute a command of the following form: (--render is not needed, since the env will connect to the running GUI server)

python3 arspb/run_policy.py --expert_policy_file=arspb/trained_policies/InvertedPendulumSwingupBulletEnv-v0/nn_policy_plus.npz --json_file=arspb/trained_policies/InvertedPendulumSwingupBulletEnv-v0/params.json

Or enjoy a fully connected neural network policy, AntBulletEnv-v0:

python arspb/run_policy.py  --expert_policy_file=trained_policies/AntBulletEnv-v0/nn_policy_plus.npz --json_file=trained_policies/AntBulletEnv-v0/params.json

or a spinning running HumanoidBullet-v0 (click image below for video)

python3 arspb/run_policy.py  --expert_policy_file=arspb/trained_policies/HumanoidBulletEnv-v0/nn_policy_plus.npz --json_file=arspb/trained_policies/HumanoidBulletEnv-v0/params.json --render

Spinning running HumanoidBullet-v0

About

An implementation of the Augmented Random Search algorithm

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%