-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
sdmmc_cmd.c
779 lines (714 loc) · 24.7 KB
/
sdmmc_cmd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <inttypes.h>
#include "esp_timer.h"
#include "sdmmc_common.h"
static const char* TAG = "sdmmc_cmd";
esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
{
if (card->host.command_timeout_ms != 0) {
cmd->timeout_ms = card->host.command_timeout_ms;
} else if (cmd->timeout_ms == 0) {
cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
}
int slot = card->host.slot;
ESP_LOGV(TAG, "sending cmd slot=%d op=%" PRIu32 " arg=%" PRIx32 " flags=%x data=%p blklen=%" PRIu32 " datalen=%" PRIu32 " timeout=%" PRIu32,
slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, (uint32_t) cmd->blklen, (uint32_t) cmd->datalen, cmd->timeout_ms);
esp_err_t err = (*card->host.do_transaction)(slot, cmd);
if (err != 0) {
ESP_LOGD(TAG, "cmd=%" PRIu32 ", sdmmc_req_run returned 0x%x", cmd->opcode, err);
return err;
}
int state = MMC_R1_CURRENT_STATE(cmd->response);
ESP_LOGV(TAG, "cmd response %08" PRIx32 " %08" PRIx32 " %08" PRIx32 " %08" PRIx32 " err=0x%x state=%d",
cmd->response[0],
cmd->response[1],
cmd->response[2],
cmd->response[3],
cmd->error,
state);
return cmd->error;
}
esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
{
sdmmc_command_t app_cmd = {
.opcode = MMC_APP_CMD,
.flags = SCF_CMD_AC | SCF_RSP_R1,
.arg = MMC_ARG_RCA(card->rca),
};
esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
if (err != ESP_OK) {
return err;
}
// Check APP_CMD status bit (only in SD mode)
if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
ESP_LOGW(TAG, "card doesn't support APP_CMD");
return ESP_ERR_NOT_SUPPORTED;
}
return sdmmc_send_cmd(card, cmd);
}
esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
{
sdmmc_command_t cmd = {
.opcode = MMC_GO_IDLE_STATE,
.flags = SCF_CMD_BC | SCF_RSP_R0,
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (host_is_spi(card)) {
/* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
* SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
* so don't expect the above command to succeed.
* SCF_RSP_R1 flag below tells the lower layer to expect correct R1
* response (in SPI mode).
*/
(void) err;
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
cmd.flags |= SCF_RSP_R1;
err = sdmmc_send_cmd(card, &cmd);
}
if (err == ESP_OK) {
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
}
return err;
}
esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
{
const uint8_t pattern = 0xaa; /* any pattern will do here */
sdmmc_command_t cmd = {
.opcode = SD_SEND_IF_COND,
.arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
.flags = SCF_CMD_BCR | SCF_RSP_R7,
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
uint8_t response = cmd.response[0] & 0xff;
if (response != pattern) {
ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
return ESP_ERR_INVALID_RESPONSE;
}
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
{
esp_err_t err;
/* If the host supports this, keep card clock enabled
* from the start of ACMD41 until the card is idle.
* (Ref. SD spec, section 4.4 "Clock control".)
*/
if (card->host.set_cclk_always_on != NULL) {
err = card->host.set_cclk_always_on(card->host.slot, true);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: set_cclk_always_on (1) err=0x%x", __func__, err);
return err;
}
ESP_LOGV(TAG, "%s: keeping clock on during ACMD41", __func__);
}
sdmmc_command_t cmd = {
.arg = ocr,
.flags = SCF_CMD_BCR | SCF_RSP_R3,
.opcode = SD_APP_OP_COND
};
int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
for (; nretries != 0; --nretries) {
bzero(&cmd, sizeof cmd);
cmd.arg = ocr;
cmd.flags = SCF_CMD_BCR | SCF_RSP_R3;
if (!card->is_mmc) { /* SD mode */
cmd.opcode = SD_APP_OP_COND;
err = sdmmc_send_app_cmd(card, &cmd);
} else { /* MMC mode */
cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK;
cmd.arg |= MMC_OCR_SECTOR_MODE;
cmd.opcode = MMC_SEND_OP_COND;
err = sdmmc_send_cmd(card, &cmd);
}
if (err != ESP_OK) {
if (--err_cnt == 0) {
ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
goto done;
} else {
ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
continue;
}
}
// In SD protocol, card sets MEM_READY bit in OCR when it is ready.
// In SPI protocol, card clears IDLE_STATE bit in R1 response.
if (!host_is_spi(card)) {
if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
ocr == 0) {
break;
}
} else {
if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
break;
}
}
vTaskDelay(10 / portTICK_PERIOD_MS);
}
if (nretries == 0) {
err = ESP_ERR_TIMEOUT;
goto done;
}
if (ocrp) {
*ocrp = MMC_R3(cmd.response);
}
err = ESP_OK;
done:
if (card->host.set_cclk_always_on != NULL) {
esp_err_t err_cclk_dis = card->host.set_cclk_always_on(card->host.slot, false);
if (err_cclk_dis != ESP_OK) {
ESP_LOGE(TAG, "%s: set_cclk_always_on (2) err=0x%x", __func__, err);
/* If we failed to disable clock, don't overwrite 'err' to return the original error */
}
ESP_LOGV(TAG, "%s: clock always-on mode disabled", __func__);
}
return err;
}
esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
{
assert(ocrp);
sdmmc_command_t cmd = {
.opcode = SD_READ_OCR,
.flags = SCF_CMD_BCR | SCF_RSP_R2
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
*ocrp = SD_SPI_R3(cmd.response);
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid)
{
assert(out_raw_cid);
sdmmc_command_t cmd = {
.opcode = MMC_ALL_SEND_CID,
.flags = SCF_CMD_BCR | SCF_RSP_R2
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t));
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
{
assert(out_cid);
assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
assert(!card->is_mmc && "MMC cards are not supported in SPI mode");
sdmmc_response_t buf;
sdmmc_command_t cmd = {
.opcode = MMC_SEND_CID,
.flags = SCF_CMD_READ | SCF_CMD_ADTC,
.arg = 0,
.data = &buf[0],
.datalen = sizeof(buf)
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
sdmmc_flip_byte_order(buf, sizeof(buf));
return sdmmc_decode_cid(buf, out_cid);
}
esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
{
assert(out_rca);
sdmmc_command_t cmd = {
.opcode = SD_SEND_RELATIVE_ADDR,
.flags = SCF_CMD_BCR | SCF_RSP_R6
};
/* MMC cards expect us to set the RCA.
* Set RCA to 1 since we don't support multiple cards on the same bus, for now.
*/
uint16_t mmc_rca = 1;
if (card->is_mmc) {
cmd.arg = MMC_ARG_RCA(mmc_rca);
}
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
*out_rca = (card->is_mmc) ? mmc_rca : SD_R6_RCA(cmd.response);
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
{
sdmmc_command_t cmd = {
.opcode = MMC_SET_BLOCKLEN,
.arg = csd->sector_size,
.flags = SCF_CMD_AC | SCF_RSP_R1
};
return sdmmc_send_cmd(card, &cmd);
}
esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
{
/* The trick with SEND_CSD is that in SPI mode, it acts as a data read
* command, while in SD mode it is an AC command with R2 response.
*/
sdmmc_response_t spi_buf;
const bool is_spi = host_is_spi(card);
sdmmc_command_t cmd = {
.opcode = MMC_SEND_CSD,
.arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
.flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
(SCF_CMD_AC | SCF_RSP_R2),
.data = is_spi ? &spi_buf[0] : 0,
.datalen = is_spi ? sizeof(spi_buf) : 0,
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
uint32_t* ptr = cmd.response;
if (is_spi) {
sdmmc_flip_byte_order(spi_buf, sizeof(spi_buf));
ptr = spi_buf;
}
if (card->is_mmc) {
err = sdmmc_mmc_decode_csd(cmd.response, out_csd);
} else {
err = sdmmc_decode_csd(ptr, out_csd);
}
return err;
}
esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
{
/* Don't expect to see a response when de-selecting a card */
uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
sdmmc_command_t cmd = {
.opcode = MMC_SELECT_CARD,
.arg = MMC_ARG_RCA(rca),
.flags = SCF_CMD_AC | response
};
return sdmmc_send_cmd(card, &cmd);
}
esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
{
size_t datalen = 8;
esp_err_t err = ESP_FAIL;
uint32_t *buf = NULL;
size_t actual_size = 0;
err = esp_dma_malloc(datalen, 0, (void *)&buf, &actual_size);
if (err != ESP_OK) {
return err;
}
sdmmc_command_t cmd = {
.data = buf,
.datalen = datalen,
.buflen = actual_size,
.blklen = datalen,
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
.opcode = SD_APP_SEND_SCR
};
err = sdmmc_send_app_cmd(card, &cmd);
if (err == ESP_OK) {
err = sdmmc_decode_scr(buf, out_scr);
}
free(buf);
return err;
}
esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
{
sdmmc_command_t cmd = {
.opcode = SD_APP_SET_BUS_WIDTH,
.flags = SCF_RSP_R1 | SCF_CMD_AC,
.arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1,
};
return sdmmc_send_app_cmd(card, &cmd);
}
esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
{
assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
sdmmc_command_t cmd = {
.opcode = SD_CRC_ON_OFF,
.arg = crc_enable ? 1 : 0,
.flags = SCF_CMD_AC | SCF_RSP_R1
};
return sdmmc_send_cmd(card, &cmd);
}
esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
{
sdmmc_command_t cmd = {
.opcode = MMC_SEND_STATUS,
.arg = MMC_ARG_RCA(card->rca),
.flags = SCF_CMD_AC | SCF_RSP_R1
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
if (out_status) {
if (host_is_spi(card)) {
*out_status = SD_SPI_R2(cmd.response);
} else {
*out_status = MMC_R1(cmd.response);
}
}
return ESP_OK;
}
esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
size_t start_block, size_t block_count)
{
if (block_count == 0) {
return ESP_OK;
}
esp_err_t err = ESP_OK;
size_t block_size = card->csd.sector_size;
if (esp_dma_is_buffer_aligned(src, block_size * block_count, ESP_DMA_BUF_LOCATION_INTERNAL)) {
err = sdmmc_write_sectors_dma(card, src, start_block, block_count, block_size * block_count);
} else {
// SDMMC peripheral needs DMA-capable buffers. Split the write into
// separate single block writes, if needed, and allocate a temporary
// DMA-capable buffer.
void *tmp_buf = NULL;
size_t actual_size = 0;
err = esp_dma_malloc(block_size, 0, &tmp_buf, &actual_size);
if (err != ESP_OK) {
return err;
}
const uint8_t* cur_src = (const uint8_t*) src;
for (size_t i = 0; i < block_count; ++i) {
memcpy(tmp_buf, cur_src, block_size);
cur_src += block_size;
err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1, actual_size);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
__func__, err, start_block, i);
break;
}
}
free(tmp_buf);
}
return err;
}
esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
size_t start_block, size_t block_count, size_t buffer_len)
{
if (start_block + block_count > card->csd.capacity) {
return ESP_ERR_INVALID_SIZE;
}
size_t block_size = card->csd.sector_size;
sdmmc_command_t cmd = {
.flags = SCF_CMD_ADTC | SCF_RSP_R1,
.blklen = block_size,
.data = (void*) src,
.datalen = block_count * block_size,
.buflen = buffer_len,
.timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
};
if (block_count == 1) {
cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
} else {
cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
}
if (card->ocr & SD_OCR_SDHC_CAP) {
cmd.arg = start_block;
} else {
cmd.arg = start_block * block_size;
}
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
return err;
}
uint32_t status = 0;
size_t count = 0;
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
/* SD mode: wait for the card to become idle based on R1 status */
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) {
ESP_LOGE(TAG, "write sectors dma - timeout");
return ESP_ERR_TIMEOUT;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
return err;
}
if (++count % 16 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%" PRIu32 ")", (uint32_t) count);
}
}
/* SPI mode: although card busy indication is based on the busy token,
* SD spec recommends that the host checks the results of programming by sending
* SEND_STATUS command. Some of the conditions reported in SEND_STATUS are not
* reported via a data error token.
*/
if (host_is_spi(card)) {
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
return err;
}
if (status & SD_SPI_R2_CARD_LOCKED) {
ESP_LOGE(TAG, "%s: write failed, card is locked: r2=0x%04" PRIx32,
__func__, status);
return ESP_ERR_INVALID_STATE;
}
if (status != 0) {
ESP_LOGE(TAG, "%s: card status indicates an error after write operation: r2=0x%04" PRIx32,
__func__, status);
return ESP_ERR_INVALID_RESPONSE;
}
}
return ESP_OK;
}
esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
size_t start_block, size_t block_count)
{
if (block_count == 0) {
return ESP_OK;
}
esp_err_t err = ESP_OK;
size_t block_size = card->csd.sector_size;
if (esp_dma_is_buffer_aligned(dst, block_size * block_count, ESP_DMA_BUF_LOCATION_INTERNAL)) {
err = sdmmc_read_sectors_dma(card, dst, start_block, block_count, block_size * block_count);
} else {
// SDMMC peripheral needs DMA-capable buffers. Split the read into
// separate single block reads, if needed, and allocate a temporary
// DMA-capable buffer.
void *tmp_buf = NULL;
size_t actual_size = 0;
err = esp_dma_malloc(block_size, 0, &tmp_buf, &actual_size);
if (err != ESP_OK) {
return err;
}
uint8_t* cur_dst = (uint8_t*) dst;
for (size_t i = 0; i < block_count; ++i) {
err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1, actual_size);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
__func__, err, start_block, i);
break;
}
memcpy(cur_dst, tmp_buf, block_size);
cur_dst += block_size;
}
free(tmp_buf);
}
return err;
}
esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
size_t start_block, size_t block_count, size_t buffer_len)
{
if (start_block + block_count > card->csd.capacity) {
return ESP_ERR_INVALID_SIZE;
}
size_t block_size = card->csd.sector_size;
sdmmc_command_t cmd = {
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
.blklen = block_size,
.data = (void*) dst,
.datalen = block_count * block_size,
.buflen = buffer_len,
};
if (block_count == 1) {
cmd.opcode = MMC_READ_BLOCK_SINGLE;
} else {
cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
}
if (card->ocr & SD_OCR_SDHC_CAP) {
cmd.arg = start_block;
} else {
cmd.arg = start_block * block_size;
}
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
return err;
}
uint32_t status = 0;
size_t count = 0;
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
/* SD mode: wait for the card to become idle based on R1 status */
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) {
ESP_LOGE(TAG, "read sectors dma - timeout");
return ESP_ERR_TIMEOUT;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
return err;
}
if (++count % 16 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
}
}
return ESP_OK;
}
esp_err_t sdmmc_erase_sectors(sdmmc_card_t* card, size_t start_sector,
size_t sector_count, sdmmc_erase_arg_t arg)
{
if (sector_count == 0) {
return ESP_OK;
}
if (start_sector + sector_count > card->csd.capacity) {
return ESP_ERR_INVALID_SIZE;
}
uint32_t cmd38_arg;
if (arg == SDMMC_ERASE_ARG) {
cmd38_arg = card->is_mmc ? SDMMC_MMC_TRIM_ARG : SDMMC_SD_ERASE_ARG;
} else {
cmd38_arg = card->is_mmc ? SDMMC_MMC_DISCARD_ARG : SDMMC_SD_DISCARD_ARG;
}
/* validate the CMD38 argument against card supported features */
if (card->is_mmc) {
if ((cmd38_arg == SDMMC_MMC_TRIM_ARG) && (sdmmc_can_trim(card) != ESP_OK)) {
return ESP_ERR_NOT_SUPPORTED;
}
if ((cmd38_arg == SDMMC_MMC_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
return ESP_ERR_NOT_SUPPORTED;
}
} else { // SD card
if ((cmd38_arg == SDMMC_SD_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
return ESP_ERR_NOT_SUPPORTED;
}
}
/* default as block unit address */
size_t addr_unit_mult = 1;
if (!(card->ocr & SD_OCR_SDHC_CAP)) {
addr_unit_mult = card->csd.sector_size;
}
/* prepare command to set the start address */
sdmmc_command_t cmd = {
.flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_WAIT_BUSY,
.opcode = card->is_mmc ? MMC_ERASE_GROUP_START :
SD_ERASE_GROUP_START,
.arg = (start_sector * addr_unit_mult),
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_START) returned 0x%x", __func__, err);
return err;
}
/* prepare command to set the end address */
cmd.opcode = card->is_mmc ? MMC_ERASE_GROUP_END : SD_ERASE_GROUP_END;
cmd.arg = ((start_sector + (sector_count - 1)) * addr_unit_mult);
err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_END) returned 0x%x", __func__, err);
return err;
}
/* issue erase command */
memset((void *)&cmd, 0 , sizeof(sdmmc_command_t));
cmd.flags = SCF_CMD_AC | SCF_RSP_R1B | SCF_WAIT_BUSY;
cmd.opcode = MMC_ERASE;
cmd.arg = cmd38_arg;
cmd.timeout_ms = sdmmc_get_erase_timeout_ms(card, cmd38_arg, sector_count * card->csd.sector_size / 1024);
err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE) returned 0x%x", __func__, err);
return err;
}
if (host_is_spi(card)) {
uint32_t status;
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
return err;
}
if (status != 0) {
ESP_LOGE(TAG, "%s: card status indicates an error after erase operation: r2=0x%04" PRIx32,
__func__, status);
return ESP_ERR_INVALID_RESPONSE;
}
}
return ESP_OK;
}
esp_err_t sdmmc_can_discard(sdmmc_card_t* card)
{
if ((card->is_mmc) && (card->ext_csd.rev >= EXT_CSD_REV_1_6)) {
return ESP_OK;
}
// SD card
if ((!card->is_mmc) && !host_is_spi(card) && (card->ssr.discard_support == 1)) {
return ESP_OK;
}
return ESP_FAIL;
}
esp_err_t sdmmc_can_trim(sdmmc_card_t* card)
{
if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_GB_CL_EN)) {
return ESP_OK;
}
return ESP_FAIL;
}
esp_err_t sdmmc_mmc_can_sanitize(sdmmc_card_t* card)
{
if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_SANITIZE)) {
return ESP_OK;
}
return ESP_FAIL;
}
esp_err_t sdmmc_mmc_sanitize(sdmmc_card_t* card, uint32_t timeout_ms)
{
esp_err_t err;
uint8_t index = EXT_CSD_SANITIZE_START;
uint8_t set = EXT_CSD_CMD_SET_NORMAL;
uint8_t value = 0x01;
if (sdmmc_mmc_can_sanitize(card) != ESP_OK) {
return ESP_ERR_NOT_SUPPORTED;
}
/*
* A Sanitize operation is initiated by writing a value to the extended
* CSD[165] SANITIZE_START. While the device is performing the sanitize
* operation, the busy line is asserted.
* SWITCH command is used to write the EXT_CSD register.
*/
sdmmc_command_t cmd = {
.opcode = MMC_SWITCH,
.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set,
.flags = SCF_RSP_R1B | SCF_CMD_AC | SCF_WAIT_BUSY,
.timeout_ms = timeout_ms,
};
err = sdmmc_send_cmd(card, &cmd);
if (err == ESP_OK) {
//check response bit to see that switch was accepted
if (MMC_R1(cmd.response) & MMC_R1_SWITCH_ERROR) {
err = ESP_ERR_INVALID_RESPONSE;
}
}
return err;
}
esp_err_t sdmmc_full_erase(sdmmc_card_t* card)
{
sdmmc_erase_arg_t arg = SDMMC_SD_ERASE_ARG; // erase by default for SD card
esp_err_t err;
if (card->is_mmc) {
arg = sdmmc_mmc_can_sanitize(card) == ESP_OK ? SDMMC_MMC_DISCARD_ARG: SDMMC_MMC_TRIM_ARG;
}
err = sdmmc_erase_sectors(card, 0, card->csd.capacity, arg);
if ((err == ESP_OK) && (arg == SDMMC_MMC_DISCARD_ARG)) {
uint32_t timeout_ms = sdmmc_get_erase_timeout_ms(card, SDMMC_MMC_DISCARD_ARG, card->csd.capacity * ((uint64_t) card->csd.sector_size) / 1024);
return sdmmc_mmc_sanitize(card, timeout_ms);
}
return err;
}
esp_err_t sdmmc_get_status(sdmmc_card_t* card)
{
uint32_t stat;
return sdmmc_send_cmd_send_status(card, &stat);
}