-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
__init__.py
executable file
·1918 lines (1655 loc) · 65.7 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
#
# SPDX-License-Identifier: GPL-2.0-or-later
# PYTHON_ARGCOMPLETE_OK
import argparse
import hashlib
import operator
import os
import struct
import sys
import tempfile
import zlib
from collections import namedtuple
from io import IOBase
from cryptography import exceptions
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import ec, padding, rsa, utils
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.utils import int_to_bytes
import ecdsa
import esptool
SIG_BLOCK_MAGIC = 0xE7
# Scheme used in Secure Boot V2
SIG_BLOCK_VERSION_RSA = 0x02
SIG_BLOCK_VERSION_ECDSA = 0x03
# SHA scheme used in Secure Boot V2 ECDSA signature blocks
ECDSA_SHA_256 = 0x0
ECDSA_SHA_384 = 0x1
# Curve IDs used in Secure Boot V2 ECDSA signature blocks
CURVE_ID_P192 = 1
CURVE_ID_P256 = 2
CURVE_ID_P384 = 3
SECTOR_SIZE = 4096
SIG_BLOCK_SIZE = (
1216 # Refer to secure boot v2 signature block format for more details.
)
def get_chunks(source, chunk_len):
"""Returns an iterator over 'chunk_len' chunks of 'source'"""
return (source[i : i + chunk_len] for i in range(0, len(source), chunk_len))
def endian_swap_words(source):
"""Endian-swap each word in 'source' bitstring"""
assert len(source) % 4 == 0
words = "I" * (len(source) // 4)
return struct.pack("<" + words, *struct.unpack(">" + words, source))
def swap_word_order(source):
"""Swap the order of the words in 'source' bitstring"""
assert len(source) % 4 == 0
words = "I" * (len(source) // 4)
return struct.pack(words, *reversed(struct.unpack(words, source)))
def _load_hardware_key(keyfile):
"""Load a 128/256/512-bit key, similar to stored in efuse, from a file
128-bit keys will be extended to 256-bit using the SHA256 of the key
192-bit keys will be extended to 256-bit using the same algorithm used
by hardware if 3/4 Coding Scheme is set.
"""
key = keyfile.read()
if len(key) not in [16, 24, 32, 64]:
raise esptool.FatalError(
"Key file contains wrong length (%d bytes), 16, 24, 32 or 64 expected."
% len(key)
)
if len(key) == 16:
key = _sha256_digest(key)
print("Using 128-bit key (extended)")
elif len(key) == 24:
key = key + key[8:16]
assert len(key) == 32
print("Using 192-bit key (extended)")
elif len(key) == 32:
print("Using 256-bit key")
else:
print("Using 512-bit key")
return key
def digest_secure_bootloader(args):
"""Calculate the digest of a bootloader image, in the same way the hardware
secure boot engine would do so. Can be used with a pre-loaded key to update a
secure bootloader."""
_check_output_is_not_input(args.keyfile, args.output)
_check_output_is_not_input(args.image, args.output)
_check_output_is_not_input(args.iv, args.output)
if args.iv is not None:
print("WARNING: --iv argument is for TESTING PURPOSES ONLY")
iv = args.iv.read(128)
else:
iv = os.urandom(128)
plaintext_image = args.image.read()
args.image.seek(0)
# secure boot engine reads in 128 byte blocks (ie SHA512 block
# size), but also doesn't look for any appended SHA-256 digest
fw_image = esptool.bin_image.ESP32FirmwareImage(args.image)
if fw_image.append_digest:
if len(plaintext_image) % 128 <= 32:
# ROM bootloader will read to the end of the 128 byte block, but not
# to the end of the SHA-256 digest at the end
new_len = len(plaintext_image) - (len(plaintext_image) % 128)
plaintext_image = plaintext_image[:new_len]
# if image isn't 128 byte multiple then pad with 0xFF (ie unwritten flash)
# as this is what the secure boot engine will see
if len(plaintext_image) % 128 != 0:
plaintext_image += b"\xFF" * (128 - (len(plaintext_image) % 128))
plaintext = iv + plaintext_image
# Secure Boot digest algorithm in hardware uses AES256 ECB to
# produce a ciphertext, then feeds output through SHA-512 to
# produce the digest. Each block in/out of ECB is reordered
# (due to hardware quirks not for security.)
key = _load_hardware_key(args.keyfile)
backend = default_backend()
cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=backend)
encryptor = cipher.encryptor()
digest = hashlib.sha512()
for block in get_chunks(plaintext, 16):
block = block[::-1] # reverse each input block
cipher_block = encryptor.update(block)
# reverse and then byte swap each word in the output block
cipher_block = cipher_block[::-1]
for block in get_chunks(cipher_block, 4):
# Python hashlib can build each SHA block internally
digest.update(block[::-1])
if args.output is None:
args.output = os.path.splitext(args.image.name)[0] + "-digest-0x0000.bin"
with open(args.output, "wb") as f:
f.write(iv)
digest = digest.digest()
for word in get_chunks(digest, 4):
f.write(word[::-1]) # swap word order in the result
f.write(b"\xFF" * (0x1000 - f.tell())) # pad to 0x1000
f.write(plaintext_image)
print("digest+image written to %s" % args.output)
def _generate_ecdsa_signing_key(curve_id, keyfile):
sk = ecdsa.SigningKey.generate(curve=curve_id)
with open(keyfile, "wb") as f:
f.write(sk.to_pem())
def generate_signing_key(args):
if os.path.exists(args.keyfile):
raise esptool.FatalError("ERROR: Key file %s already exists" % args.keyfile)
if args.version == "1":
if hasattr(args, "scheme"):
if args.scheme != "ecdsa256" and args.scheme is not None:
raise esptool.FatalError("ERROR: V1 only supports ECDSA256")
"""
Generate an ECDSA signing key for signing secure boot images (post-bootloader)
"""
_generate_ecdsa_signing_key(ecdsa.NIST256p, args.keyfile)
print("ECDSA NIST256p private key in PEM format written to %s" % args.keyfile)
elif args.version == "2":
if args.scheme == "rsa3072" or args.scheme is None:
"""Generate a RSA 3072 signing key for signing secure boot images"""
private_key = rsa.generate_private_key(
public_exponent=65537, key_size=3072, backend=default_backend()
).private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncryption(),
)
with open(args.keyfile, "wb") as f:
f.write(private_key)
print(f"RSA 3072 private key in PEM format written to {args.keyfile}")
elif args.scheme == "ecdsa192":
"""Generate a ECDSA 192 signing key for signing secure boot images"""
_generate_ecdsa_signing_key(ecdsa.NIST192p, args.keyfile)
print(f"ECDSA NIST192p private key in PEM format written to {args.keyfile}")
elif args.scheme == "ecdsa256":
"""Generate a ECDSA 256 signing key for signing secure boot images"""
_generate_ecdsa_signing_key(ecdsa.NIST256p, args.keyfile)
print(f"ECDSA NIST256p private key in PEM format written to {args.keyfile}")
elif args.scheme == "ecdsa384":
"""Generate a ECDSA 384 signing key for signing secure boot images"""
_generate_ecdsa_signing_key(ecdsa.NIST384p, args.keyfile)
print(f"ECDSA NIST384p private key in PEM format written to {args.keyfile}")
else:
raise esptool.FatalError("ERROR: Unsupported signing scheme {args.scheme}")
def load_ecdsa_signing_key(keyfile):
"""Load ECDSA signing key"""
try:
sk = ecdsa.SigningKey.from_pem(keyfile.read())
except ValueError:
raise esptool.FatalError(
"Incorrect ECDSA private key specified. "
"Please check algorithm and/or format."
)
if sk.curve not in [ecdsa.NIST192p, ecdsa.NIST256p]:
raise esptool.FatalError("Supports NIST192p and NIST256p keys only")
return sk
def _load_ecdsa_signing_key(keyfile):
"""Load ECDSA signing key for Secure Boot V1 only"""
sk = load_ecdsa_signing_key(keyfile)
if sk.curve != ecdsa.NIST256p:
raise esptool.FatalError(
"Signing key uses incorrect curve. ESP32 Secure Boot only supports "
"NIST256p (openssl calls this curve 'prime256v1')"
)
return sk
def _load_ecdsa_verifying_key(keyfile):
"""Load ECDSA verifying key for Secure Boot V1 only"""
try:
vk = ecdsa.VerifyingKey.from_pem(keyfile.read())
except ValueError:
raise esptool.FatalError(
"Incorrect ECDSA public key specified. "
"Please check algorithm and/or format."
)
if vk.curve != ecdsa.NIST256p:
raise esptool.FatalError(
"Signing key uses incorrect curve. ESP32 Secure Boot only supports "
"NIST256p (openssl calls this curve 'prime256v1')"
)
return vk
def _load_sbv2_signing_key(keydata):
"""
Load Secure Boot V2 signing key
can be rsa.RSAPrivateKey or ec.EllipticCurvePrivateKey
"""
sk = serialization.load_pem_private_key(
keydata, password=None, backend=default_backend()
)
if isinstance(sk, rsa.RSAPrivateKey):
if sk.key_size != 3072:
raise esptool.FatalError(
"Key file has length %d bits. Secure boot v2 only supports RSA-3072."
% sk.key_size
)
return sk
if isinstance(sk, ec.EllipticCurvePrivateKey):
if not isinstance(sk.curve, (ec.SECP192R1, ec.SECP256R1, ec.SECP384R1)):
raise esptool.FatalError(
"Key file uses incorrect curve. Secure Boot V2 + ECDSA only supports "
"NIST192p, NIST256p, NIST384p (aka prime192v1 / secp192r1, prime256v1 / secp256r1, secp384r1)"
)
return sk
raise esptool.FatalError("Unsupported signing key for Secure Boot V2")
def _load_sbv2_pub_key(keydata):
"""
Load Secure Boot V2 public key, can be rsa.RSAPublicKey or ec.EllipticCurvePublicKey
"""
vk = serialization.load_pem_public_key(keydata, backend=default_backend())
if isinstance(vk, rsa.RSAPublicKey):
if vk.key_size != 3072:
raise esptool.FatalError(
"Key file has length %d bits. Secure boot v2 only supports RSA-3072."
% vk.key_size
)
return vk
if isinstance(vk, ec.EllipticCurvePublicKey):
if not isinstance(vk.curve, (ec.SECP192R1, ec.SECP256R1, ec.SECP384R1)):
raise esptool.FatalError(
"Key file uses incorrect curve. Secure Boot V2 + ECDSA only supports "
"NIST192p, NIST256p, NIST384p (aka prime192v1 / secp192r1, prime256v1 / secp256r1, secp384r1)"
)
return vk
raise esptool.FatalError("Unsupported public key for Secure Boot V2")
def _get_sbv2_pub_key(keyfile):
key_data = keyfile.read()
if (
b"-BEGIN RSA PRIVATE KEY" in key_data
or b"-BEGIN EC PRIVATE KEY" in key_data
or b"-BEGIN PRIVATE KEY" in key_data
):
return _load_sbv2_signing_key(key_data).public_key()
elif b"-BEGIN PUBLIC KEY" in key_data:
vk = _load_sbv2_pub_key(key_data)
else:
raise esptool.FatalError(
"Verification key does not appear to be an RSA Private or "
"Public key in PEM format. Unsupported"
)
return vk
def _get_sbv2_rsa_primitives(public_key):
primitives = namedtuple("primitives", ["n", "e", "m", "rinv"])
numbers = public_key.public_numbers()
primitives.n = numbers.n #
primitives.e = numbers.e # two public key components
# Note: this cheats and calls a private 'rsa' method to get the modular
# inverse calculation.
primitives.m = -rsa._modinv(primitives.n, 1 << 32)
rr = 1 << (public_key.key_size * 2)
primitives.rinv = rr % primitives.n
return primitives
def _microecc_format(a, b, curve_len):
"""
Given two numbers (curve coordinates or (r,s) signature), write them out as a
little-endian byte sequence suitable for micro-ecc
"native little endian" mode
"""
byte_len = int(curve_len / 8)
ab = int_to_bytes(a, byte_len)[::-1] + int_to_bytes(b, byte_len)[::-1]
assert len(ab) in [48, 64, 96]
return ab
def sign_data(args):
if args.keyfile:
_check_output_is_not_input(args.keyfile, args.output)
_check_output_is_not_input(args.datafile, args.output)
if args.version == "1":
return sign_secure_boot_v1(args)
elif args.version == "2":
return sign_secure_boot_v2(args)
def sign_secure_boot_v1(args):
"""
Sign a data file with a ECDSA private key, append binary signature to file contents
"""
binary_content = args.datafile.read()
if args.hsm:
raise esptool.FatalError(
"Secure Boot V1 does not support signing using an "
"external Hardware Security Module (HSM)"
)
if args.signature:
print("Pre-calculated signatures found")
if len(args.pub_key) > 1:
raise esptool.FatalError("Secure Boot V1 only supports one signing key")
signature = args.signature[0].read()
# get verifying/public key
vk = _load_ecdsa_verifying_key(args.pub_key[0])
else:
if len(args.keyfile) > 1:
raise esptool.FatalError("Secure Boot V1 only supports one signing key")
sk = _load_ecdsa_signing_key(args.keyfile[0])
# calculate signature of binary data
signature = sk.sign_deterministic(binary_content, hashlib.sha256)
# get verifying/public key
vk = sk.get_verifying_key()
# back-verify signature
vk.verify(signature, binary_content, hashlib.sha256) # throws exception on failure
if args.output is None or os.path.abspath(args.output) == os.path.abspath(
args.datafile.name
): # append signature to input file
args.datafile.close()
outfile = open(args.datafile.name, "ab")
else: # write file & signature to new file
outfile = open(args.output, "wb")
outfile.write(binary_content)
outfile.write(
struct.pack("I", 0)
) # Version indicator, allow for different curves/formats later
outfile.write(signature)
outfile.close()
print("Signed %d bytes of data from %s" % (len(binary_content), args.datafile.name))
def sign_secure_boot_v2(args):
"""
Sign a firmware app image with an RSA private key using RSA-PSS,
or ECDSA private key using P192 or P256 or P384.
Write output file with a Secure Boot V2 header appended.
"""
SIG_BLOCK_MAX_COUNT = 3
contents = args.datafile.read()
sig_block_num = 0
signature_sector = b""
signature = args.signature
pub_key = args.pub_key
if len(contents) % SECTOR_SIZE != 0:
if args.signature:
raise esptool.FatalError(
"Secure Boot V2 requires the signature block to start "
"from a 4KB aligned sector "
"but the datafile supplied is not sector aligned."
)
else:
pad_by = SECTOR_SIZE - (len(contents) % SECTOR_SIZE)
print(
f"Padding data contents by {pad_by} bytes "
"so signature sector aligns at sector boundary"
)
contents += b"\xff" * pad_by
elif args.append_signatures:
while sig_block_num < SIG_BLOCK_MAX_COUNT:
sig_block = validate_signature_block(contents, sig_block_num)
if sig_block is None:
break
signature_sector += (
sig_block # Signature sector is populated with already valid blocks
)
sig_block_num += 1
if len(signature_sector) % SIG_BLOCK_SIZE != 0:
raise esptool.FatalError("Incorrect signature sector size")
if sig_block_num == 0:
print(
"No valid signature blocks found. "
"Discarding --append-signature and proceeding to sign the image afresh."
)
else:
print(
f"{sig_block_num} valid signature block(s) already present "
"in the signature sector."
)
if sig_block_num == SIG_BLOCK_MAX_COUNT:
raise esptool.FatalError(
f"Upto {SIG_BLOCK_MAX_COUNT} signature blocks are supported. "
"(For ESP32-ECO3 only 1 signature block is supported)"
)
# Signature stripped off the content
# (the legitimate blocks are included in signature_sector)
contents = contents[: len(contents) - SECTOR_SIZE]
if args.hsm:
if args.hsm_config is None:
raise esptool.FatalError(
"Config file is required to generate signature using an external HSM."
)
import espsecure.esp_hsm_sign as hsm
try:
config = hsm.read_hsm_config(args.hsm_config)
except Exception as e:
raise esptool.FatalError(f"Incorrect HSM config file format ({e})")
if pub_key is None:
pub_key = extract_pubkey_from_hsm(config)
signature = generate_signature_using_hsm(config, contents)
if signature:
print("Pre-calculated signatures found")
key_count = len(pub_key)
if len(signature) != key_count:
raise esptool.FatalError(
f"Number of public keys ({key_count}) not equal to "
f"the number of signatures {len(signature)}."
)
else:
key_count = len(args.keyfile)
empty_signature_blocks = SIG_BLOCK_MAX_COUNT - sig_block_num
if key_count > empty_signature_blocks:
raise esptool.FatalError(
f"Number of keys({key_count}) more than the empty signature blocks."
f"({empty_signature_blocks})"
)
print(f"{key_count} signing key(s) found.")
# Generate signature block using pre-calculated signatures
if signature:
signature_block = generate_signature_block_using_pre_calculated_signature(
signature, pub_key, contents
)
# Generate signature block by signing using private keys
else:
signature_block = generate_signature_block_using_private_key(
args.keyfile, contents
)
if signature_block is None or len(signature_block) == 0:
raise esptool.FatalError("Signature Block generation failed")
signature_sector += signature_block
if (
len(signature_sector) < 0
and len(signature_sector) > SIG_BLOCK_SIZE * 3
and len(signature_sector) % SIG_BLOCK_SIZE != 0
):
raise esptool.FatalError("Incorrect signature sector generation")
total_sig_blocks = len(signature_sector) // SIG_BLOCK_SIZE
# Pad signature_sector to sector
signature_sector = signature_sector + (
b"\xff" * (SECTOR_SIZE - len(signature_sector))
)
if len(signature_sector) != SECTOR_SIZE:
raise esptool.FatalError("Incorrect signature sector size")
# Write to output file, or append to existing file
if args.output is None:
args.datafile.close()
args.output = args.datafile.name
with open(args.output, "wb") as f:
f.write(contents + signature_sector)
print(
f"Signed {len(contents)} bytes of data from {args.datafile.name}. "
f"Signature sector now has {total_sig_blocks} signature blocks."
)
def generate_signature_using_hsm(config, contents):
import espsecure.esp_hsm_sign as hsm
session = hsm.establish_session(config)
# get the private key
private_key = hsm.get_privkey_info(session, config)
# Sign payload
signature = hsm.sign_payload(private_key, contents)
hsm.close_connection(session)
temp_signature_file = tempfile.TemporaryFile()
temp_signature_file.write(signature)
temp_signature_file.seek(0)
return [temp_signature_file]
def generate_signature_block_using_pre_calculated_signature(
signature, pub_key, contents
):
signature_blocks = b""
for sig, pk in zip(signature, pub_key):
try:
public_key = _get_sbv2_pub_key(pk)
signature = sig.read()
if isinstance(public_key, rsa.RSAPublicKey):
# Calculate digest of data file
digest = _sha256_digest(contents)
# RSA signature
rsa_primitives = _get_sbv2_rsa_primitives(public_key)
# Verify the signature
public_key.verify(
signature,
digest,
padding.PSS(mgf=padding.MGF1(hashes.SHA256()), salt_length=32),
utils.Prehashed(hashes.SHA256()),
)
signature_block = generate_rsa_signature_block(
digest, rsa_primitives, signature
)
else:
# ECDSA signature
numbers = public_key.public_numbers()
if isinstance(numbers.curve, ec.SECP192R1):
curve_len = 192
curve_id = CURVE_ID_P192
hash_type = hashes.SHA256()
digest = _sha256_digest(contents)
elif isinstance(numbers.curve, ec.SECP256R1):
curve_len = 256
curve_id = CURVE_ID_P256
hash_type = hashes.SHA256()
digest = _sha256_digest(contents)
elif isinstance(numbers.curve, ec.SECP384R1):
curve_len = 384
curve_id = CURVE_ID_P384
hash_type = hashes.SHA384()
digest = _sha384_digest(contents)
else:
raise esptool.FatalError("Invalid ECDSA curve instance.")
# Verify the signature
public_key.verify(
signature, digest, ec.ECDSA(utils.Prehashed(hash_type))
)
pubkey_point = _microecc_format(numbers.x, numbers.y, curve_len)
r, s = utils.decode_dss_signature(signature)
signature_rs = _microecc_format(r, s, curve_len)
signature_block = generate_ecdsa_signature_block(
digest, curve_id, pubkey_point, signature_rs
)
except exceptions.InvalidSignature:
raise esptool.FatalError(
"Signature verification failed: Invalid Signature\n"
"The pre-calculated signature has not been signed "
"using the given public key"
)
signature_block += struct.pack("<I", zlib.crc32(signature_block) & 0xFFFFFFFF)
signature_block += b"\x00" * 16 # padding
if len(signature_block) != SIG_BLOCK_SIZE:
raise esptool.FatalError("Incorrect signature block size")
signature_blocks += signature_block
return signature_blocks
def generate_signature_block_using_private_key(keyfiles, contents):
signature_blocks = b""
for keyfile in keyfiles:
private_key = _load_sbv2_signing_key(keyfile.read())
# Sign
if isinstance(private_key, rsa.RSAPrivateKey):
digest = _sha256_digest(contents)
# RSA signature
signature = private_key.sign(
digest,
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=32,
),
utils.Prehashed(hashes.SHA256()),
)
rsa_primitives = _get_sbv2_rsa_primitives(private_key.public_key())
signature_block = generate_rsa_signature_block(
digest, rsa_primitives, signature
)
else:
numbers = private_key.public_key().public_numbers()
if isinstance(private_key.curve, ec.SECP192R1):
curve_len = 192
curve_id = CURVE_ID_P192
hash_type = hashes.SHA256()
digest = _sha256_digest(contents)
elif isinstance(numbers.curve, ec.SECP256R1):
curve_len = 256
curve_id = CURVE_ID_P256
hash_type = hashes.SHA256()
digest = _sha256_digest(contents)
elif isinstance(numbers.curve, ec.SECP384R1):
curve_len = 384
curve_id = CURVE_ID_P384
hash_type = hashes.SHA384()
digest = _sha384_digest(contents)
else:
raise esptool.FatalError("Invalid ECDSA curve instance.")
# ECDSA signatures
signature = private_key.sign(digest, ec.ECDSA(utils.Prehashed(hash_type)))
pubkey_point = _microecc_format(numbers.x, numbers.y, curve_len)
r, s = utils.decode_dss_signature(signature)
signature_rs = _microecc_format(r, s, curve_len)
signature_block = generate_ecdsa_signature_block(
digest, curve_id, pubkey_point, signature_rs
)
signature_block += struct.pack("<I", zlib.crc32(signature_block) & 0xFFFFFFFF)
signature_block += b"\x00" * 16 # padding
if len(signature_block) != SIG_BLOCK_SIZE:
raise esptool.FatalError("Incorrect signature block size")
signature_blocks += signature_block
return signature_blocks
def generate_rsa_signature_block(digest, rsa_primitives, signature):
"""
Encode in rsa signature block format
Note: the [::-1] is to byte swap all of the bignum
values (signatures, coefficients) to little endian
for use with the RSA peripheral, rather than big endian
which is conventionally used for RSA.
"""
signature_block = struct.pack(
"<BBxx32s384sI384sI384s",
SIG_BLOCK_MAGIC,
SIG_BLOCK_VERSION_RSA,
digest,
int_to_bytes(rsa_primitives.n)[::-1],
rsa_primitives.e,
int_to_bytes(rsa_primitives.rinv)[::-1],
rsa_primitives.m & 0xFFFFFFFF,
signature[::-1],
)
return signature_block
def generate_ecdsa_signature_block(digest, curve_id, pubkey_point, signature_rs):
"""
Encode in rsa signature block format
# block is padded out to the much larger size
# of the RSA version of this structure
"""
if curve_id in [CURVE_ID_P192, CURVE_ID_P256]:
signature_block = struct.pack(
"<BBBx32sB64s64s1031x",
SIG_BLOCK_MAGIC,
SIG_BLOCK_VERSION_ECDSA,
ECDSA_SHA_256,
digest,
curve_id,
pubkey_point,
signature_rs,
)
elif curve_id == CURVE_ID_P384:
signature_block = struct.pack(
"<BBBx48sB96s96s951x",
SIG_BLOCK_MAGIC,
SIG_BLOCK_VERSION_ECDSA,
ECDSA_SHA_384,
digest,
curve_id,
pubkey_point,
signature_rs,
)
else:
raise esptool.FatalError(
"Invalid ECDSA curve ID detected while generating ECDSA signature block."
)
return signature_block
def verify_signature(args):
if args.version == "1":
return verify_signature_v1(args)
elif args.version == "2":
return verify_signature_v2(args)
def verify_signature_v1(args):
"""Verify a previously signed binary image, using the ECDSA public key"""
key_data = args.keyfile.read()
if b"-BEGIN EC PRIVATE KEY" in key_data:
sk = ecdsa.SigningKey.from_pem(key_data)
vk = sk.get_verifying_key()
elif b"-BEGIN PUBLIC KEY" in key_data:
vk = ecdsa.VerifyingKey.from_pem(key_data)
elif len(key_data) == 64:
vk = ecdsa.VerifyingKey.from_string(key_data, curve=ecdsa.NIST256p)
else:
raise esptool.FatalError(
"Verification key does not appear to be an EC key in PEM format "
"or binary EC public key data. Unsupported"
)
if vk.curve != ecdsa.NIST256p:
raise esptool.FatalError(
"Public key uses incorrect curve. ESP32 Secure Boot only supports "
"NIST256p (openssl calls this curve 'prime256v1"
)
binary_content = args.datafile.read()
data = binary_content[0:-68]
sig_version, signature = struct.unpack("I64s", binary_content[-68:])
if sig_version != 0:
raise esptool.FatalError(
"Signature block has version %d. This version of espsecure "
"only supports version 0." % sig_version
)
print("Verifying %d bytes of data" % len(data))
try:
if vk.verify(signature, data, hashlib.sha256):
print("Signature is valid")
else:
raise esptool.FatalError("Signature is not valid")
except ecdsa.keys.BadSignatureError:
raise esptool.FatalError("Signature is not valid")
def validate_signature_block(image_content, sig_blk_num):
offset = -SECTOR_SIZE + sig_blk_num * SIG_BLOCK_SIZE
sig_blk = image_content[offset : offset + SIG_BLOCK_SIZE]
assert len(sig_blk) == SIG_BLOCK_SIZE
# note: in case of ECDSA key, the exact fields in the middle are wrong
# (but unused here)
magic, version, _, _, _, _, _, _, blk_crc = struct.unpack(
"<BBxx32s384sI384sI384sI16x", sig_blk
)
# The signature block(1216 bytes) consists of the data part(1196 bytes)
# followed by a crc32(4 byte) and a 16 byte pad.
calc_crc = zlib.crc32(sig_blk[:1196])
is_invalid_block = magic != SIG_BLOCK_MAGIC
is_invalid_block |= version not in [SIG_BLOCK_VERSION_RSA, SIG_BLOCK_VERSION_ECDSA]
if is_invalid_block or blk_crc != calc_crc & 0xFFFFFFFF: # Signature block invalid
return None
key_type = "RSA" if version == SIG_BLOCK_VERSION_RSA else "ECDSA"
print(f"Signature block {sig_blk_num} is valid ({key_type}).")
return sig_blk
def verify_signature_v2(args):
"""Verify a previously signed binary image, using the RSA or ECDSA public key"""
keyfile = args.keyfile
if args.hsm:
if args.hsm_config is None:
raise esptool.FatalError(
"Config file is required to extract public key from an external HSM."
)
import espsecure.esp_hsm_sign as hsm
try:
config = hsm.read_hsm_config(args.hsm_config)
except Exception as e:
raise esptool.FatalError(f"Incorrect HSM config file format ({e})")
# get public key from HSM
keyfile = extract_pubkey_from_hsm(config)[0]
vk = _get_sbv2_pub_key(keyfile)
if isinstance(vk, rsa.RSAPublicKey):
SIG_BLOCK_MAX_COUNT = 3
elif isinstance(vk, ec.EllipticCurvePublicKey):
SIG_BLOCK_MAX_COUNT = 1
image_content = args.datafile.read()
if len(image_content) < SECTOR_SIZE or len(image_content) % SECTOR_SIZE != 0:
raise esptool.FatalError(
"Invalid datafile. Data size should be non-zero & a multiple of 4096."
)
valid = False
for sig_blk_num in range(SIG_BLOCK_MAX_COUNT):
sig_blk = validate_signature_block(image_content, sig_blk_num)
if sig_blk is None:
print(f"Signature block {sig_blk_num} invalid. Skipping.")
continue
_, version, ecdsa_sha_version = struct.unpack("<BBBx", sig_blk[:4])
if version == SIG_BLOCK_VERSION_ECDSA and ecdsa_sha_version == ECDSA_SHA_384:
blk_digest = struct.unpack("<48s", sig_blk[4:52])[0]
digest = _sha384_digest(image_content[:-SECTOR_SIZE])
else:
blk_digest = struct.unpack("<32s", sig_blk[4:36])[0]
digest = _sha256_digest(image_content[:-SECTOR_SIZE])
if blk_digest != digest:
raise esptool.FatalError(
"Signature block image digest does not match "
f"the actual image digest {digest}. Expected {blk_digest}."
)
try:
if isinstance(vk, rsa.RSAPublicKey):
_, _, _, _, signature, _ = struct.unpack(
"<384sI384sI384sI16x", sig_blk[36:]
)
vk.verify(
signature[::-1],
digest,
padding.PSS(mgf=padding.MGF1(hashes.SHA256()), salt_length=32),
utils.Prehashed(hashes.SHA256()),
)
else:
if ecdsa_sha_version == ECDSA_SHA_256:
curve_id, _pubkey, encoded_rs = struct.unpack(
"B64s64s1031x4x16x", sig_blk[36:]
)
elif ecdsa_sha_version == ECDSA_SHA_384:
curve_id, _pubkey, encoded_rs = struct.unpack(
"B96s96s951x4x16x", sig_blk[52:]
)
assert curve_id in (CURVE_ID_P192, CURVE_ID_P256, CURVE_ID_P384)
# length of each number in the keypair
if curve_id == CURVE_ID_P192:
keylen = 24
hash_type = hashes.SHA256()
elif curve_id == CURVE_ID_P256:
keylen = 32
hash_type = hashes.SHA256()
elif curve_id == CURVE_ID_P384:
keylen = 48
hash_type = hashes.SHA384()
r = int.from_bytes(encoded_rs[:keylen], "little")
s = int.from_bytes(encoded_rs[keylen : keylen * 2], "little")
signature = utils.encode_dss_signature(r, s)
vk.verify(signature, digest, ec.ECDSA(utils.Prehashed(hash_type)))
key_type = "RSA" if isinstance(vk, rsa.RSAPublicKey) else "ECDSA"
print(
f"Signature block {sig_blk_num} verification successful using "
f"the supplied key ({key_type})."
)
valid = True
except exceptions.InvalidSignature:
print(
f"Signature block {sig_blk_num} is not signed by the supplied key. "
"Checking the next block"
)
continue
if not valid:
raise esptool.FatalError(
"Checked all blocks. Signature could not be verified with the provided key."
)
def extract_public_key(args):
_check_output_is_not_input(args.keyfile, args.public_keyfile)
if args.version == "1":
"""
Load an ECDSA private key and extract the embedded public key
as raw binary data.
"""
sk = _load_ecdsa_signing_key(args.keyfile)
vk = sk.get_verifying_key()
args.public_keyfile.write(vk.to_string())
elif args.version == "2":
"""
Load an RSA or an ECDSA private key and extract the public key
as raw binary data.
"""
sk = _load_sbv2_signing_key(args.keyfile.read())
vk = sk.public_key().public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo,
)
args.public_keyfile.write(vk)
print(
"%s public key extracted to %s" % (args.keyfile.name, args.public_keyfile.name)
)
def extract_pubkey_from_hsm(config):
import espsecure.esp_hsm_sign as hsm
session = hsm.establish_session(config)
# get public key from HSM
public_key = hsm.get_pubkey(session, config)
hsm.close_connection(session)
pem = public_key.public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo,
)
temp_pub_key_file = tempfile.TemporaryFile()
temp_pub_key_file.write(pem)
temp_pub_key_file.seek(0)
return [temp_pub_key_file]
def _sha256_digest(data):
digest = hashlib.sha256()
digest.update(data)
return digest.digest()
def _sha384_digest(contents):
# Calculate digest of data file
digest = hashlib.sha384()
digest.update(contents)
return digest.digest()
def signature_info_v2(args):
"""
Validates the signature block and prints the RSA/ECDSA public key
digest for valid blocks