-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
memory.go
340 lines (302 loc) · 8.13 KB
/
memory.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
package mipsevm
import (
"encoding/binary"
"encoding/json"
"fmt"
"io"
"math/bits"
"sort"
"github.com/ethereum/go-ethereum/crypto"
)
// Note: 2**12 = 4 KiB, the min phys page size in the Go runtime.
const (
PageAddrSize = 12
PageKeySize = 32 - PageAddrSize
PageSize = 1 << PageAddrSize
PageAddrMask = PageSize - 1
MaxPageCount = 1 << PageKeySize
PageKeyMask = MaxPageCount - 1
)
func HashPair(left, right [32]byte) [32]byte {
out := crypto.Keccak256Hash(left[:], right[:])
//fmt.Printf("0x%x 0x%x -> 0x%x\n", left, right, out)
return out
}
var zeroHashes = func() [256][32]byte {
// empty parts of the tree are all zero. Precompute the hash of each full-zero range sub-tree level.
var out [256][32]byte
for i := 1; i < 256; i++ {
out[i] = HashPair(out[i-1], out[i-1])
}
return out
}()
type Memory struct {
// generalized index -> merkle root or nil if invalidated
nodes map[uint64]*[32]byte
// pageIndex -> cached page
pages map[uint32]*CachedPage
// Note: since we don't de-alloc pages, we don't do ref-counting.
// Once a page exists, it doesn't leave memory
// two caches: we often read instructions from one page, and do memory things with another page.
// this prevents map lookups each instruction
lastPageKeys [2]uint32
lastPage [2]*CachedPage
}
func NewMemory() *Memory {
return &Memory{
nodes: make(map[uint64]*[32]byte),
pages: make(map[uint32]*CachedPage),
lastPageKeys: [2]uint32{^uint32(0), ^uint32(0)}, // default to invalid keys, to not match any pages
}
}
func (m *Memory) PageCount() int {
return len(m.pages)
}
func (m *Memory) ForEachPage(fn func(pageIndex uint32, page *Page) error) error {
for pageIndex, cachedPage := range m.pages {
if err := fn(pageIndex, cachedPage.Data); err != nil {
return err
}
}
return nil
}
func (m *Memory) Invalidate(addr uint32) {
// addr must be aligned to 4 bytes
if addr&0x3 != 0 {
panic(fmt.Errorf("unaligned memory access: %x", addr))
}
// find page, and invalidate addr within it
if p, ok := m.pageLookup(addr >> PageAddrSize); ok {
prevValid := p.Ok[1]
p.Invalidate(addr & PageAddrMask)
if !prevValid { // if the page was already invalid before, then nodes to mem-root will also still be.
return
}
} else { // no page? nothing to invalidate
return
}
// find the gindex of the first page covering the address
gindex := ((uint64(1) << 32) | uint64(addr)) >> PageAddrSize
for gindex > 0 {
m.nodes[gindex] = nil
gindex >>= 1
}
}
func (m *Memory) MerkleizeSubtree(gindex uint64) [32]byte {
l := uint64(bits.Len64(gindex))
if l > 28 {
panic("gindex too deep")
}
if l > PageKeySize {
depthIntoPage := l - 1 - PageKeySize
pageIndex := (gindex >> depthIntoPage) & PageKeyMask
if p, ok := m.pages[uint32(pageIndex)]; ok {
pageGindex := (1 << depthIntoPage) | (gindex & ((1 << depthIntoPage) - 1))
return p.MerkleizeSubtree(pageGindex)
} else {
return zeroHashes[28-l] // page does not exist
}
}
if l > PageKeySize+1 {
panic("cannot jump into intermediate node of page")
}
n, ok := m.nodes[gindex]
if !ok {
// if the node doesn't exist, the whole sub-tree is zeroed
return zeroHashes[28-l]
}
if n != nil {
return *n
}
left := m.MerkleizeSubtree(gindex << 1)
right := m.MerkleizeSubtree((gindex << 1) | 1)
r := HashPair(left, right)
m.nodes[gindex] = &r
return r
}
func (m *Memory) MerkleProof(addr uint32) (out [28 * 32]byte) {
proof := m.traverseBranch(1, addr, 0)
// encode the proof
for i := 0; i < 28; i++ {
copy(out[i*32:(i+1)*32], proof[i][:])
}
return out
}
func (m *Memory) traverseBranch(parent uint64, addr uint32, depth uint8) (proof [][32]byte) {
if depth == 32-5 {
proof = make([][32]byte, 0, 32-5+1)
proof = append(proof, m.MerkleizeSubtree(parent))
return
}
if depth > 32-5 {
panic("traversed too deep")
}
self := parent << 1
sibling := self | 1
if addr&(1<<(31-depth)) != 0 {
self, sibling = sibling, self
}
proof = m.traverseBranch(self, addr, depth+1)
siblingNode := m.MerkleizeSubtree(sibling)
proof = append(proof, siblingNode)
return
}
func (m *Memory) MerkleRoot() [32]byte {
return m.MerkleizeSubtree(1)
}
func (m *Memory) pageLookup(pageIndex uint32) (*CachedPage, bool) {
// hit caches
if pageIndex == m.lastPageKeys[0] {
return m.lastPage[0], true
}
if pageIndex == m.lastPageKeys[1] {
return m.lastPage[1], true
}
p, ok := m.pages[pageIndex]
// only cache existing pages.
if ok {
m.lastPageKeys[1] = m.lastPageKeys[0]
m.lastPage[1] = m.lastPage[0]
m.lastPageKeys[0] = pageIndex
m.lastPage[0] = p
}
return p, ok
}
func (m *Memory) SetMemory(addr uint32, v uint32) {
// addr must be aligned to 4 bytes
if addr&0x3 != 0 {
panic(fmt.Errorf("unaligned memory access: %x", addr))
}
pageIndex := addr >> PageAddrSize
pageAddr := addr & PageAddrMask
p, ok := m.pageLookup(pageIndex)
if !ok {
// allocate the page if we have not already.
// Go may mmap relatively large ranges, but we only allocate the pages just in time.
p = m.AllocPage(pageIndex)
} else {
m.Invalidate(addr) // invalidate this branch of memory, now that the value changed
}
binary.BigEndian.PutUint32(p.Data[pageAddr:pageAddr+4], v)
}
func (m *Memory) GetMemory(addr uint32) uint32 {
// addr must be aligned to 4 bytes
if addr&0x3 != 0 {
panic(fmt.Errorf("unaligned memory access: %x", addr))
}
p, ok := m.pageLookup(addr >> PageAddrSize)
if !ok {
return 0
}
pageAddr := addr & PageAddrMask
return binary.BigEndian.Uint32(p.Data[pageAddr : pageAddr+4])
}
func (m *Memory) AllocPage(pageIndex uint32) *CachedPage {
p := &CachedPage{Data: new(Page)}
m.pages[pageIndex] = p
// make nodes to root
k := (1 << PageKeySize) | uint64(pageIndex)
for k > 0 {
m.nodes[k] = nil
k >>= 1
}
return p
}
type pageEntry struct {
Index uint32 `json:"index"`
Data *Page `json:"data"`
}
func (m *Memory) MarshalJSON() ([]byte, error) { // nosemgrep
pages := make([]pageEntry, 0, len(m.pages))
for k, p := range m.pages {
pages = append(pages, pageEntry{
Index: k,
Data: p.Data,
})
}
sort.Slice(pages, func(i, j int) bool {
return pages[i].Index < pages[j].Index
})
return json.Marshal(pages)
}
func (m *Memory) UnmarshalJSON(data []byte) error {
var pages []pageEntry
if err := json.Unmarshal(data, &pages); err != nil {
return err
}
m.nodes = make(map[uint64]*[32]byte)
m.pages = make(map[uint32]*CachedPage)
m.lastPageKeys = [2]uint32{^uint32(0), ^uint32(0)}
m.lastPage = [2]*CachedPage{nil, nil}
for i, p := range pages {
if _, ok := m.pages[p.Index]; ok {
return fmt.Errorf("cannot load duplicate page, entry %d, page index %d", i, p.Index)
}
m.AllocPage(p.Index).Data = p.Data
}
return nil
}
func (m *Memory) SetMemoryRange(addr uint32, r io.Reader) error {
for {
pageIndex := addr >> PageAddrSize
pageAddr := addr & PageAddrMask
p, ok := m.pageLookup(pageIndex)
if !ok {
p = m.AllocPage(pageIndex)
}
p.InvalidateFull()
n, err := r.Read(p.Data[pageAddr:])
if err != nil {
if err == io.EOF {
return nil
}
return err
}
addr += uint32(n)
}
}
type memReader struct {
m *Memory
addr uint32
count uint32
}
func (r *memReader) Read(dest []byte) (n int, err error) {
if r.count == 0 {
return 0, io.EOF
}
// Keep iterating over memory until we have all our data.
// It may wrap around the address range, and may not be aligned
endAddr := r.addr + r.count
pageIndex := r.addr >> PageAddrSize
start := r.addr & PageAddrMask
end := uint32(PageSize)
if pageIndex == (endAddr >> PageAddrSize) {
end = endAddr & PageAddrMask
}
p, ok := r.m.pageLookup(pageIndex)
if ok {
n = copy(dest, p.Data[start:end])
} else {
n = copy(dest, make([]byte, end-start)) // default to zeroes
}
r.addr += uint32(n)
r.count -= uint32(n)
return n, nil
}
func (m *Memory) ReadMemoryRange(addr uint32, count uint32) io.Reader {
return &memReader{m: m, addr: addr, count: count}
}
func (m *Memory) Usage() string {
total := uint64(len(m.pages)) * PageSize
const unit = 1024
if total < unit {
return fmt.Sprintf("%d B", total)
}
div, exp := uint64(unit), 0
for n := total / unit; n >= unit; n /= unit {
div *= unit
exp++
}
// KiB, MiB, GiB, TiB, ...
return fmt.Sprintf("%.1f %ciB", float64(total)/float64(div), "KMGTPE"[exp])
}