Skip to content

Official TORTOISE Diffusion MRI Processing Pipeline V4 Source Code and Documentation

License

Notifications You must be signed in to change notification settings

QMICodeBase/TORTOISEV4

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TORTOISEV4

Official TORTOISE Diffusion MRI Processing Pipeline V4 Source Code and Documentation drawing

What is TORTOISE?

TORTOISE (Tolerably Obsessive registration and Tensor Optimization Indolent Software Ensemble) is a suite of programs for for pre-processing, post-processing and analyzing diffusion MRI data. It contains C, C++, Cuda, Python programs as well as shell scripts. Begninning with V4 TORTOISE is now open-source and available to all researchers.

DISCLAIMER: TORTOISEV4 IS INCOMPATIBLE WITH PREVIOUS VERSIONS.

Diffusion MRI Preprocessing Steps:

  • Data Import
  • Denoising
  • Gibbs Ringing Correction
  • Inter-volume motion & Eddy-currents distortion correction.
  • Intra-volume slice-to-volume alignment
  • Outlier detection & replacement
  • Signal drift correction
  • Susceptibility-induced distortion Correction
    • Diffeomorphic registration to a T2W image
    • Blip-up blip-down (reverse phase-encoding) correction.
  • Gradient nonlinearity correction
    • Gradwarp
    • Effects on Bmatrices as:
      • HCP style gradient deviation tensors
      • Voxelwise Bmatrices
  • DWI output aligned to an anatomical image, with customizable resolution, field of view, # voxels, data save orientation with correct overall or voxelwise Bmatrix reorientation
  • Auatomatic quality control and reporting tools.

Diffusion Modelling:

  • Diffusion Tensor Imaging (DTI).
    • Estimation
      • Weighted Least Squares (WLLS)
      • Non-linear least Squares (NLLS)
      • Diagonal fitting
      • Non-linear 1 full DT + free-water compartment fitting. (data must have intermediate b=values)
      • Robust Fitting (Restore)
    • A rich set of scalar map computations
  • Mean Apparent Propagator (MAPMRI)
    • Constrained Estimation
    • Derived Scalar map estimation
  • Conversion tools to other popular software formats

Diffusion MRI Postprocessing Steps:

  • Diffusion Tensor based registration and atlas creation tools.

Please visit these websites for more information:

TORTOISE homepage: https://tortoise.nibib.nih.gov/

TORTOISE community page: https://discuss.afni.nimh.nih.gov/c/tortoise-message-board/9

TORTOISEV4 installation

There are 3 ways you can use TORTOISEV4:

  1. Download pre-compiled executables for Linux (any distribution) from the Releases section (on the right) on this GitHub page.
  2. Download the Docker containers
  3. Compile the source code

Please note that the source code here will always be up-to-date. However, the assembled packages might take a while to be updated.

TORTOISEV4 Docker installation and use (recommended way for MACOSX)

  1. Download and install docker from: https://docs.docker.com/engine/install/
  2. Make sure docker works with: docker run hello-world
  3. Download TORTOISEV4 Docker image:
docker pull eurotomania/tortoise:latest
  1. Make sure TORTOISE runs fine:
docker run eurotomania/tortoise

In Linux, docker might require "sudo" to run. The above command should run the TORTOISEProcess executable and print out its help. To Run any other executable, just type its name after, as:

docker run eurotomania/tortoise EstimateTensor

To mount your local data drive to Docker:

docker run -v /mydatadrive:/mydatadrive eurotomania/tortoise TORTOISEProcess --up_data /mydatadrive/my.nii

To run the CUDA versions of the executables, you need to enable the GPUs:

docker run --gpus all --net=host -e DISPLAY -v /mydatadrive:/mydatadrive eurotomania/tortoise TORTOISEProcess_cuda --up_data /mydatadrive/my.nii

TORTOISEV4 Source code compilation

TORTOISEV4 Prerequisite Libraries

TORTOISE requires the following libraries to be installed beforehand:

The compilation has been tested with GCC-9/G++9 and GCC-11/G++11. Nnewer compilers should be okay but we ran into compilation issues compiling with GCC/G++-7. You also need Cmake for compilation. The version used for testing was Cmake-3.20.

Initial Instructions:

mkdir TORTOISE_installation_folder
cd TORTOISE_installation_folder
mkdir libraries
cd libraries

1) CUDA installation (OPTIONAL. If you have an NIVIDA GPU and want to make TORTOISE faster)

Follow the instructions at: https://developer.nvidia.com/cuda-11.3.0-download-archive Install CUDA to default location at /usr/local/cuda

2) FFTW3 installation

For debian systems:

sudo apt-get update -y
sudo apt-get install -y fftw3
sudo apt-get install libfftw3-dev

3) Eigen installation

sudo apt-get update -y
sudo apt install libeigen3-dev

4) Boost installation

wget https://boostorg.jfrog.io/artifactory/main/release/1.86.0/source/boost_1_86_0.tar.gz
tar -xvf boost_1_86_0.tar.gz
cd boost_1_86_0
./bootstrap.sh --with-libraries=iostreams,filesystem,system,regex --prefix=/usr/local/boost186
sudo ./b2 install
cd ..

5) ITK installation

wget https://github.com/InsightSoftwareConsortium/ITK/releases/download/v5.3rc04/InsightToolkit-5.3rc04.tar.gz
tar -xvf InsightToolkit-5.3rc04.tar.gz
mkdir InsightToolkit-5.3rc04_build
cd InsightToolkit-5.3rc04_build

sed -i 's/this->m_SparseGetValueAndDerivativeThreader->SetMaximumNumberOfThreads(number);/this->m_SparseGetValueAndDerivativeThreader->SetMaximumNumberOfThreads(number);this->m_SparseGetValueAndDerivativeThreader->SetNumberOfWorkUnits(number);/g' ../InsightToolkit-5.3rc04/Modules/Registration/Metricsv4/include/itkImageToImageMetricv4.hxx
sed -i 's/this->m_DenseGetValueAndDerivativeThreader->SetMaximumNumberOfThreads(number);/this->m_DenseGetValueAndDerivativeThreader->SetMaximumNumberOfThreads(number);this->m_DenseGetValueAndDerivativeThreader->SetNumberOfWorkUnits(number);/g' ../InsightToolkit-5.3rc04/Modules/Registration/Metricsv4/include/itkImageToImageMetricv4.hxx

cmake ../InsightToolkit-5.3rc04
make -j 16
cd ..

The sed commands are to fix a bug in MattesMutualInformationv4 metric that prevents limiting the number of threads used.

5) VTK installation (Optional. only for the ComputeGlyphMaps executable)

wget https://gitlab.kitware.com/vtk/vtk/-/archive/v8.0.1/vtk-v8.0.1.zip
unzip  vtk-v8.0.1.zip
mkdir VTK-8.0.1_build
cd VTK-8.0.1_build
cmake ../vtk-v8.0.1
make -j 16
cd ..

TORTOISEV4 Compilation

cd ..
git clone https://github.com/QMICodeBase/TORTOISEV4.git
cd TORTOISEV4/TORTOISEV4

For nonCUDA version:

cmake . -D USECUDA=0 -D USE_VTK=0 -D ITK_DIR=../../libraries/InsightToolkit-5.3rc04_build  

For CUDA version:

cmake . -D USECUDA=1 -D USE_VTK=0 -D ITK_DIR=../../libraries/InsightToolkit-5.3rc04_build

For ComputeGlyphMaps executable version:

cmake . -D USECUDA=0 -D USE_VTK=1 -D ITK_DIR=../../libraries/InsightToolkit-5.3rc04_build -D VTK_DIR=../../libraries/VTK-8.0.1_build 

Then,

make -j 16
cd ..
export PATH=${PATH}:$(pwd)/bin

TORTOISEV4 Usage examples

Assuming you imported your data with dcm2niix and you already have a NIFTI file for DWIs, and the corresponding json, bvecs and bvals files:

Simplest Usage:

This will only do (by default) Gibbs ringing correction, inter-volume motion and eddy-currents distortion correction.

TORTOISEProcess --up_data path_to_your_DWI_NIFTI_file

Turn on denoising:

TORTOISEProcess --up_data path_to_your_DWI_NIFTI_file --denoising for_final

Align the DWIs to an anatomical image (and perform b=0 -> T2W susceptibility distortion correction)

TORTOISEProcess --up_data path_to_your_DWI_NIFTI_file --structural path_to_your_anatomical_NIFTI --denoising for_final

Bring in Reverse Phase-encoded (blip-down) data for Susceptibility Distortion Correction

TORTOISEProcess --up_data path_to_your_main_DWI_NIFTI_file --down_data path_to_your_down_DWI_NIFTI_file --structural path_to_your_anatomical_NIFTI --denoising for_final

Intra-Volume Motion correction and Outlier Replacement

TORTOISEProcess --up_data path_to_your_main_DWI_NIFTI_file --down_data path_to_your_down_DWI_NIFTI_file --structural path_to_your_anatomical_NIFTI --denoising for_final --s2v 1 --repol 1

Correct for center frequency signal drift with a linear model

TORTOISEProcess --up_data path_to_your_main_DWI_NIFTI_file --down_data path_to_your_down_DWI_NIFTI_file --structural path_to_your_anatomical_NIFTI --denoising for_final --s2v 1 --repol 1 --drift linear

Give an output name, change the Output resolution, FOV , orientation

TORTOISEProcess --up_data path_to_your_main_DWI_NIFTI_file --down_data path_to_your_down_DWI_NIFTI_file --structural path_to_your_anatomical_NIFTI --denoising for_final --s2v 1 --repol 1 --drift linear --output path_to_output_NIFTI_file --output_res 1 1 1 --output_voxels 220 220 200 --output_orientation LPS

Input gradient nonlinearity information and output HCP-style grad_dev tensors

TORTOISEProcess --up_data path_to_your_main_DWI_NIFTI_file --down_data path_to_your_down_DWI_NIFTI_file --structural path_to_your_anatomical_NIFTI --denoising for_final --s2v 1 --repol 1 --drift linear --output path_to_output_NIFTI_file --output_res 1 1 1 --output_voxels 220 220 200 --output_orientation LPS --grad_nonlin nonlinearity_coefficients_file_OR_nonlinearity_field --output_gradnonlin_Bmtxt_type grad_dev

Dont'do ANY correction. Just Reorient DWIs to an anatomical image (with Bmatrix rotation)

TORTOISEProcess --up_data path_to_your_main_DWI_NIFTI_file --structural path_to_your_anatomical_NIFTI --denoising off --gibbs 0 -c off --epi off --s2v 0 --repol 0

About

Official TORTOISE Diffusion MRI Processing Pipeline V4 Source Code and Documentation

Resources

License

Stars

Watchers

Forks

Packages

No packages published