-
Notifications
You must be signed in to change notification settings - Fork 5
/
keys.go
628 lines (542 loc) · 14.5 KB
/
keys.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/x509"
"encoding/asn1"
"encoding/base64"
"encoding/pem"
"errors"
"fmt"
"io"
"math/big"
)
// These constants represent the algorithm names for key types supported by this
// package.
const (
KeyAlgoRSA = "ssh-rsa"
KeyAlgoDSA = "ssh-dss"
KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
)
// parsePubKey parses a public key of the given algorithm.
// Use ParsePublicKey for keys with prepended algorithm.
func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, ok bool) {
switch algo {
case KeyAlgoRSA:
return parseRSA(in)
case KeyAlgoDSA:
return parseDSA(in)
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
return parseECDSA(in)
case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01:
return parseOpenSSHCertV01(in, algo)
}
return nil, nil, false
}
// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
// (see sshd(8) manual page) once the options and key type fields have been
// removed.
func parseAuthorizedKey(in []byte) (out PublicKey, comment string, ok bool) {
in = bytes.TrimSpace(in)
i := bytes.IndexAny(in, " \t")
if i == -1 {
i = len(in)
}
base64Key := in[:i]
key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
n, err := base64.StdEncoding.Decode(key, base64Key)
if err != nil {
return
}
key = key[:n]
out, _, ok = ParsePublicKey(key)
if !ok {
return nil, "", false
}
comment = string(bytes.TrimSpace(in[i:]))
return
}
// ParseAuthorizedKeys parses a public key from an authorized_keys
// file used in OpenSSH according to the sshd(8) manual page.
func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, ok bool) {
for len(in) > 0 {
end := bytes.IndexByte(in, '\n')
if end != -1 {
rest = in[end+1:]
in = in[:end]
} else {
rest = nil
}
end = bytes.IndexByte(in, '\r')
if end != -1 {
in = in[:end]
}
in = bytes.TrimSpace(in)
if len(in) == 0 || in[0] == '#' {
in = rest
continue
}
i := bytes.IndexAny(in, " \t")
if i == -1 {
in = rest
continue
}
field := string(in[:i])
switch field {
case KeyAlgoRSA, KeyAlgoDSA:
out, comment, ok = parseAuthorizedKey(in[i:])
if ok {
return
}
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
// We don't support these keys.
in = rest
continue
case CertAlgoRSAv01, CertAlgoDSAv01,
CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01:
// We don't support these certificates.
in = rest
continue
}
// No key type recognised. Maybe there's an options field at
// the beginning.
var b byte
inQuote := false
var candidateOptions []string
optionStart := 0
for i, b = range in {
isEnd := !inQuote && (b == ' ' || b == '\t')
if (b == ',' && !inQuote) || isEnd {
if i-optionStart > 0 {
candidateOptions = append(candidateOptions, string(in[optionStart:i]))
}
optionStart = i + 1
}
if isEnd {
break
}
if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
inQuote = !inQuote
}
}
for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
i++
}
if i == len(in) {
// Invalid line: unmatched quote
in = rest
continue
}
in = in[i:]
i = bytes.IndexAny(in, " \t")
if i == -1 {
in = rest
continue
}
field = string(in[:i])
switch field {
case KeyAlgoRSA, KeyAlgoDSA:
out, comment, ok = parseAuthorizedKey(in[i:])
if ok {
options = candidateOptions
return
}
}
in = rest
continue
}
return
}
// ParsePublicKey parses an SSH public key formatted for use in
// the SSH wire protocol according to RFC 4253, section 6.6.
func ParsePublicKey(in []byte) (out PublicKey, rest []byte, ok bool) {
algo, in, ok := parseString(in)
if !ok {
return
}
return parsePubKey(in, string(algo))
}
// MarshalAuthorizedKey returns a byte stream suitable for inclusion
// in an OpenSSH authorized_keys file following the format specified
// in the sshd(8) manual page.
func MarshalAuthorizedKey(key PublicKey) []byte {
b := &bytes.Buffer{}
b.WriteString(key.PublicKeyAlgo())
b.WriteByte(' ')
e := base64.NewEncoder(base64.StdEncoding, b)
e.Write(MarshalPublicKey(key))
e.Close()
b.WriteByte('\n')
return b.Bytes()
}
// PublicKey is an abstraction of different types of public keys.
type PublicKey interface {
// PrivateKeyAlgo returns the name of the encryption system.
PrivateKeyAlgo() string
// PublicKeyAlgo returns the algorithm for the public key,
// which may be different from PrivateKeyAlgo for certificates.
PublicKeyAlgo() string
// Marshal returns the serialized key data in SSH wire format,
// without the name prefix. Callers should typically use
// MarshalPublicKey().
Marshal() []byte
// Verify that sig is a signature on the given data using this
// key. This function will hash the data appropriately first.
Verify(data []byte, sigBlob []byte) bool
}
// A Signer is can create signatures that verify against a public key.
type Signer interface {
// PublicKey returns an associated PublicKey instance.
PublicKey() PublicKey
// Sign returns raw signature for the given data. This method
// will apply the hash specified for the keytype to the data.
Sign(rand io.Reader, data []byte) ([]byte, error)
}
type rsaPublicKey rsa.PublicKey
func (r *rsaPublicKey) PrivateKeyAlgo() string {
return "ssh-rsa"
}
func (r *rsaPublicKey) PublicKeyAlgo() string {
return r.PrivateKeyAlgo()
}
// parseRSA parses an RSA key according to RFC 4253, section 6.6.
func parseRSA(in []byte) (out PublicKey, rest []byte, ok bool) {
key := new(rsa.PublicKey)
bigE, in, ok := parseInt(in)
if !ok || bigE.BitLen() > 24 {
return
}
e := bigE.Int64()
if e < 3 || e&1 == 0 {
ok = false
return
}
key.E = int(e)
if key.N, in, ok = parseInt(in); !ok {
return
}
ok = true
return (*rsaPublicKey)(key), in, ok
}
func (r *rsaPublicKey) Marshal() []byte {
// See RFC 4253, section 6.6.
e := new(big.Int).SetInt64(int64(r.E))
length := intLength(e)
length += intLength(r.N)
ret := make([]byte, length)
rest := marshalInt(ret, e)
marshalInt(rest, r.N)
return ret
}
func (r *rsaPublicKey) Verify(data []byte, sig []byte) bool {
h := crypto.SHA1.New()
h.Write(data)
digest := h.Sum(nil)
return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), crypto.SHA1, digest, sig) == nil
}
type rsaPrivateKey struct {
*rsa.PrivateKey
}
func (r *rsaPrivateKey) PublicKey() PublicKey {
return (*rsaPublicKey)(&r.PrivateKey.PublicKey)
}
func (r *rsaPrivateKey) Sign(rand io.Reader, data []byte) ([]byte, error) {
h := crypto.SHA1.New()
h.Write(data)
digest := h.Sum(nil)
return rsa.SignPKCS1v15(rand, r.PrivateKey, crypto.SHA1, digest)
}
type dsaPublicKey dsa.PublicKey
func (r *dsaPublicKey) PrivateKeyAlgo() string {
return "ssh-dss"
}
func (r *dsaPublicKey) PublicKeyAlgo() string {
return r.PrivateKeyAlgo()
}
// parseDSA parses an DSA key according to RFC 4253, section 6.6.
func parseDSA(in []byte) (out PublicKey, rest []byte, ok bool) {
key := new(dsa.PublicKey)
if key.P, in, ok = parseInt(in); !ok {
return
}
if key.Q, in, ok = parseInt(in); !ok {
return
}
if key.G, in, ok = parseInt(in); !ok {
return
}
if key.Y, in, ok = parseInt(in); !ok {
return
}
ok = true
return (*dsaPublicKey)(key), in, ok
}
func (r *dsaPublicKey) Marshal() []byte {
// See RFC 4253, section 6.6.
length := intLength(r.P)
length += intLength(r.Q)
length += intLength(r.G)
length += intLength(r.Y)
ret := make([]byte, length)
rest := marshalInt(ret, r.P)
rest = marshalInt(rest, r.Q)
rest = marshalInt(rest, r.G)
marshalInt(rest, r.Y)
return ret
}
func (k *dsaPublicKey) Verify(data []byte, sigBlob []byte) bool {
h := crypto.SHA1.New()
h.Write(data)
digest := h.Sum(nil)
// Per RFC 4253, section 6.6,
// The value for 'dss_signature_blob' is encoded as a string containing
// r, followed by s (which are 160-bit integers, without lengths or
// padding, unsigned, and in network byte order).
// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
if len(sigBlob) != 40 {
return false
}
r := new(big.Int).SetBytes(sigBlob[:20])
s := new(big.Int).SetBytes(sigBlob[20:])
return dsa.Verify((*dsa.PublicKey)(k), digest, r, s)
}
type dsaPrivateKey struct {
*dsa.PrivateKey
}
func (k *dsaPrivateKey) PublicKey() PublicKey {
return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
}
func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) ([]byte, error) {
h := crypto.SHA1.New()
h.Write(data)
digest := h.Sum(nil)
r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
if err != nil {
return nil, err
}
sig := make([]byte, 40)
copy(sig[:20], r.Bytes())
copy(sig[20:], s.Bytes())
return sig, nil
}
type ecdsaPublicKey ecdsa.PublicKey
func (key *ecdsaPublicKey) PrivateKeyAlgo() string {
return "ecdsa-sha2-" + key.nistID()
}
func (key *ecdsaPublicKey) nistID() string {
switch key.Params().BitSize {
case 256:
return "nistp256"
case 384:
return "nistp384"
case 521:
return "nistp521"
}
panic("ssh: unsupported ecdsa key size")
}
func supportedEllipticCurve(curve elliptic.Curve) bool {
return (curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521())
}
// ecHash returns the hash to match the given elliptic curve, see RFC
// 5656, section 6.2.1
func ecHash(curve elliptic.Curve) crypto.Hash {
bitSize := curve.Params().BitSize
switch {
case bitSize <= 256:
return crypto.SHA256
case bitSize <= 384:
return crypto.SHA384
}
return crypto.SHA512
}
func (key *ecdsaPublicKey) PublicKeyAlgo() string {
return key.PrivateKeyAlgo()
}
// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
func parseECDSA(in []byte) (out PublicKey, rest []byte, ok bool) {
var identifier []byte
if identifier, in, ok = parseString(in); !ok {
return
}
key := new(ecdsa.PublicKey)
switch string(identifier) {
case "nistp256":
key.Curve = elliptic.P256()
case "nistp384":
key.Curve = elliptic.P384()
case "nistp521":
key.Curve = elliptic.P521()
default:
ok = false
return
}
var keyBytes []byte
if keyBytes, in, ok = parseString(in); !ok {
return
}
key.X, key.Y = elliptic.Unmarshal(key.Curve, keyBytes)
if key.X == nil || key.Y == nil {
ok = false
return
}
return (*ecdsaPublicKey)(key), in, ok
}
func (key *ecdsaPublicKey) Marshal() []byte {
// See RFC 5656, section 3.1.
keyBytes := elliptic.Marshal(key.Curve, key.X, key.Y)
ID := key.nistID()
length := stringLength(len(ID))
length += stringLength(len(keyBytes))
ret := make([]byte, length)
r := marshalString(ret, []byte(ID))
r = marshalString(r, keyBytes)
return ret
}
func (key *ecdsaPublicKey) Verify(data []byte, sigBlob []byte) bool {
h := ecHash(key.Curve).New()
h.Write(data)
digest := h.Sum(nil)
// Per RFC 5656, section 3.1.2,
// The ecdsa_signature_blob value has the following specific encoding:
// mpint r
// mpint s
r, rest, ok := parseInt(sigBlob)
if !ok {
return false
}
s, rest, ok := parseInt(rest)
if !ok || len(rest) > 0 {
return false
}
return ecdsa.Verify((*ecdsa.PublicKey)(key), digest, r, s)
}
type ecdsaPrivateKey struct {
*ecdsa.PrivateKey
}
func (k *ecdsaPrivateKey) PublicKey() PublicKey {
return (*ecdsaPublicKey)(&k.PrivateKey.PublicKey)
}
func (k *ecdsaPrivateKey) Sign(rand io.Reader, data []byte) ([]byte, error) {
h := ecHash(k.PrivateKey.PublicKey.Curve).New()
h.Write(data)
digest := h.Sum(nil)
r, s, err := ecdsa.Sign(rand, k.PrivateKey, digest)
if err != nil {
return nil, err
}
sig := make([]byte, intLength(r)+intLength(s))
rest := marshalInt(sig, r)
marshalInt(rest, s)
return sig, nil
}
// NewPrivateKey takes a pointer to rsa, dsa or ecdsa PrivateKey
// returns a corresponding Signer instance. EC keys should use P256,
// P384 or P521.
func NewSignerFromKey(k interface{}) (Signer, error) {
var sshKey Signer
switch t := k.(type) {
case *rsa.PrivateKey:
sshKey = &rsaPrivateKey{t}
case *dsa.PrivateKey:
sshKey = &dsaPrivateKey{t}
case *ecdsa.PrivateKey:
if !supportedEllipticCurve(t.Curve) {
return nil, errors.New("ssh: only P256, P384 and P521 EC keys are supported.")
}
sshKey = &ecdsaPrivateKey{t}
default:
return nil, fmt.Errorf("ssh: unsupported key type %T", k)
}
return sshKey, nil
}
// NewPublicKey takes a pointer to rsa, dsa or ecdsa PublicKey
// and returns a corresponding ssh PublicKey instance. EC keys should use P256, P384 or P521.
func NewPublicKey(k interface{}) (PublicKey, error) {
var sshKey PublicKey
switch t := k.(type) {
case *rsa.PublicKey:
sshKey = (*rsaPublicKey)(t)
case *ecdsa.PublicKey:
if !supportedEllipticCurve(t.Curve) {
return nil, errors.New("ssh: only P256, P384 and P521 EC keys are supported.")
}
sshKey = (*ecdsaPublicKey)(t)
case *dsa.PublicKey:
sshKey = (*dsaPublicKey)(t)
default:
return nil, fmt.Errorf("ssh: unsupported key type %T", k)
}
return sshKey, nil
}
// ParsePublicKey parses a PEM encoded private key. It supports
// PKCS#1, RSA, DSA and ECDSA private keys.
func ParsePrivateKey(pemBytes []byte) (Signer, error) {
block, _ := pem.Decode(pemBytes)
if block == nil {
return nil, errors.New("ssh: no key found")
}
var rawkey interface{}
switch block.Type {
case "RSA PRIVATE KEY":
rsa, err := x509.ParsePKCS1PrivateKey(block.Bytes)
if err != nil {
return nil, err
}
rawkey = rsa
case "EC PRIVATE KEY":
ec, err := x509.ParseECPrivateKey(block.Bytes)
if err != nil {
return nil, err
}
rawkey = ec
case "DSA PRIVATE KEY":
ec, err := parseDSAPrivate(block.Bytes)
if err != nil {
return nil, err
}
rawkey = ec
default:
return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
}
return NewSignerFromKey(rawkey)
}
// parseDSAPrivate parses a DSA key in ASN.1 DER encoding, as
// documented in the OpenSSL DSA manpage.
// TODO(hanwen): move this in to crypto/x509 after the Go 1.2 freeze.
func parseDSAPrivate(p []byte) (*dsa.PrivateKey, error) {
k := struct {
Version int
P *big.Int
Q *big.Int
G *big.Int
Priv *big.Int
Pub *big.Int
}{}
rest, err := asn1.Unmarshal(p, &k)
if err != nil {
return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
}
if len(rest) > 0 {
return nil, errors.New("ssh: garbage after DSA key")
}
return &dsa.PrivateKey{
PublicKey: dsa.PublicKey{
Parameters: dsa.Parameters{
P: k.P,
Q: k.Q,
G: k.G,
},
Y: k.Priv,
},
X: k.Pub,
}, nil
}