-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter2.tex
1098 lines (1019 loc) · 59.2 KB
/
chapter2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Methodologies}\label{chap:Metho}
\textit{This chapter mainly describes the development of a new apparent polar
wander path (APWP) similarity measuring tool used in the rest of this thesis.
APWPs based on paleomagnetic data are the principal means of describing plate
motions through most of Earth history. Comparing the spatio-temporal patterns
and trends of APWPs between different tectonic plates is important for testing
proposed paleogeographic reconstructions of past supercontinents. However, thus
far there is no clearly defined quantitative approach to determine the degree of
similarity between APWPs. This chapter proposes a new method of determining the
degree of similarity between two APWPs that combines three separate difference
metrics that assess spatial separation of coeval poles, and similarities in the
length and bearing of coeval segments, using a weighted linear summation.
Bootstrap tests are used to determine whether the differences between coeval
poles and segments are significant for the given spatial uncertainties in pole
positions. An additional Fit Quality score is used to discriminate between low
difference scores caused by comparing poorly constrained paths with large
spatial uncertainties from those caused by a close fit between well-constrained
paths. The individual and combined metrics are demonstrated using tests on
synthetic pairs of APWPs with varying degrees of spatial and geometric
difference. In a test on real paleomagnetic data, we show that these metrics can
quantify the effects of correction for inclination shallowing in sedimentary
rocks on Gondwana and Laurussia's 320\textendash0 Ma APWPs. For an APWP pair,
when one APWP's three individual metrics are all greater than or equal to, or
less than or equal to the other one's, weighting is dispensable because the
similarity ranking order becomes straightforward; otherwise assigning equal
weights is recommended, although then decision makers are allowed to arbitrarily
change weights according to their preferences.}
\vfill
\minitoc\newpage
\section{Introduction}
Paleomagnetism is an important source of information on the past motions of the
Earth's tectonic plates. The orientation of remanent magnetisations acquired by
rocks during their formation record the past position of the Earth's magnetic
poles. In older rocks, these virtual geomagnetic poles often appear to be
increasingly offset from the modern day geographic poles. Because the Earth's
geomagnetic field appears to have remained largely dipolar and centered on the
spin axis for at least the last 2 billion years~\citep{E06}, this divergence is
interpreted as recording the translation and rotation of a continent by the
motion of tectonic plates in the time since the rock formed. An Apparent Polar
Wander Path (APWP) is a time sequence of paleomagnetic poles (or, more commonly,
mean poles that average all regional paleopoles of similar age) that traces
the cumulative motion of a continental fragment relative to the Earth's spin
axis.
Investigations of the Earth's past tectonic evolution and paleogeography often
involve comparing APWPs. For example, if two now separated continental fragments
were once part of the same supercontinent, their APWPs should share the same
geometry during the interval that this supercontinent existed. If the
supercontinent has been correctly reconstructed, the APWPs should also overlap
during this interval (Fig.~\ref{fig:nambal_same_geometry}). APWP comparisons can
be used to assess plate motion models generated using different datasets and/or
fitting techniques~\cite[for example]{B02,B07,S07,T08,D11}; significant
deviations from the known APWP for a continent can also be used to identify
local tectonic rotations~\cite[for example]{G10,Ch13}. Despite the clear
importance of measuring APWP similarity, these comparisons remain largely
qualitative in nature, involving visual comparisons of specific APWP segments
and checking if they have overlapping 95\% confidence limits~\cite[for
example]{B02,B07,G10,D11}. Where quantitative measures are used, the mean great
circle distance (GCD) between coeval poles on the APWP pair has been commonly
used as a generalised difference metric for a pair of APWPs, with a lower score
indicating that they are more similar~\cite[for example]{S07,T08}. However,
because GCD is simply a measure of spatial separation and does not incorporate
geometric information about the two paths being compared, it is possible for
pairs with clearly different similarities to have similar mean GCD scores
(Fig.~\ref{fig:QualitativelyDifferentSameGCD}). Due to the inherent time
variability of the geomagnetic field, uncertainties arising from the sampling
and measurement of remanent magnetisations, and uncertainties in the
magnetization age, the mean poles that make up an APWP also have associated
spatial uncertainties. The significance of a GCD score is therefore not
immediately obvious. A score that indicates a relatively large difference
between two paths may not be significant if the spatial uncertainties are large;
a small difference could be significant if the spatial uncertainties are small
(Fig.~\ref{fig:GCDlargeButIndistinguishable}).
\begin{figure*}[tbp]
\centering
\includegraphics[width=1.01\textwidth]{../../paper/tex/ComputGeosci/figures/nambal_same_geometry.pdf}
\caption[Parts of APWPs of supercontinent fragments share the same
geometry]{(a) The APWPs for North America (black) and Baltica (grey) are
spatially distinct, but their Late Paleozoic\textendash{}Early Mesozoic sections
are geometrically similar due to them both being part of the supercontinent
Pangaea. (b) Reversing the opening of the Atlantic Ocean by rotation around a
reconstruction pole (blue star) results in the overlap of these two APWPs
between 390 million years ago (Ma) and 220 Ma, validating the proposed
paleogeography. The effects of this rotation on Baltica and its APWP (BAL) are
illustrated by the motion of the circle marker (before: blank center; after:
dark center), respectively. General Perspective projection. APWPs and rotation
parameters from~\citet{To16}.}\label{fig:nambal_same_geometry}
\end{figure*}
\begin{figure*}[!ht]
\captionsetup[subfigure]{labelformat=empty,aboveskip=-6pt,belowskip=-6pt}
\centering
\begin{subfigure}[htbp]{1.01\textwidth}
\centering
\includegraphics[width=1.01\linewidth]{../../paper/tex/ComputGeosci/figures/QualitativelyDifferentSameGCD.pdf}
\caption{}\label{fig:QualitativelyDifferentSameGCD}
\end{subfigure}
\begin{subfigure}[htbp]{1.01\textwidth}
\centering
\includegraphics[width=1.01\linewidth]{../../paper/tex/ComputGeosci/figures/GCDlargeButIndistinguishable.pdf}
\caption{}\label{fig:GCDlargeButIndistinguishable}
\end{subfigure}
\caption[Examples showing great circle distance is a bad index of
similarity]{(a) How the
average GCD similarity metric ignores path geometry: \emph{Pair}\textbf{1}
(circles and squares, left) is clearly more similar than \emph{Pair}\textbf{2}
(circles and triangles, right), but for both pairs each GCD remains constant.
(b) How GCD also ignores spatial uncertainties. The average GCD separation
between coeval poles is smaller for \emph{Pair}\textbf{1} (circles and
squares, left) than \emph{Pair}\textbf{2} (circles and triangles, right). But
if spatial uncertainties (plotted as 95\% confidence ellipses) are considered,
this ranking is not trustworthy: it is \emph{Pair}\textbf{2} that is
statistically indistinguishable from the reference path. Azimuthal
Orthographic projection.}\phantomsection\label{fig:GCDbadIndex}
\end{figure*}
We have developed an improved quantitative method of calculating the similarity
between two APWPs, or coeval segments of APWPs, in the form of a composite
difference score that compares both their spatial overlap and geometry. Our
method incorporates statistical significance testing, allowing paths with
associated spatial uncertainties to be rigorously compared to each other. The
validity and effectiveness of this method, and its superior discrimination
compared to a mean GCD score, are demonstrated by comparing the published APWP
of the North America Plate to seven derivative paths with different degrees of
spatial and geometric noise applied (Fig.~\ref{fig:2traj}).
We also test our algorithm on real paleomagnetic data, demonstrating that this
tool can be used to quantitatively assess the effects of different corrections
(in this case, bulk corrections for inclination shallowing in sediments) on the
similarity between APWPs from different continents.
\section{Methods}
\subsection{Comparing Apparent Polar Wander Paths (APWPs)}
An APWP consists of a sequence of ($\mathbf{n}$) mean poles,
$\mathbf{P_1,P_2,\ldots,P_n}$, which average the published paleopoles from a
particular continent for a particular time interval. Each mean pole has
associated longitude ($\phi$), latitude ($\lambda$), and age ($\mathbf{t}$).
Spatial uncertainty is represented by a 95\% confidence ellipse described by
semi-major axis $\mathbf{dm}$ with azimuth $\beta$ (angle east of north) and
perpendicular semi-minor axis $\mathbf{dp}$ (e.g. Fig.~\ref{fig:2traj}).
For two continents that were once part of a supercontinent, their APWPs for the
period should perfectly overlap when rotated into a common reference frame
(Fig.~\ref{fig:nambal_same_geometry}). However, due to (i) the spatial
uncertainty associated with the mean poles that form an APWP, (ii) differences
in the density and quality of data available to calculate paleopoles for
different continents in coeval time periods, and (iii) uncertainties and
possible errors in the rotations used to represent past plate motions, a perfect
match will not be obtained. Instead, two `matching' paths should share a
generally similar geometry, and largely overlap with each other when rotated
into a common reference frame. A quantitative measure of the spatial and
geometric similarity between these two paths should ideally allow us to
distinguish between non-identical paths that are similar within the associated
uncertainties, and non-identical paths that are actually different, due to
differential motion between the two continents or a poorly constrained
reconstruction.
\begin{figure*}[tbp]
\captionsetup[subfigure]{singlelinecheck=off,justification=raggedright,aboveskip=-6pt,belowskip=-6pt}
\centering
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:2traj1}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/pairA.pdf}
\end{subfigure}
\vspace{.5em}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:2traj2}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/pairB.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:2traj3}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/pairC.pdf}
\end{subfigure}
\vspace{.5em}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:2traj4}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/pairD.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:2traj5}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/pairH.pdf}
\end{subfigure}
\vspace{.5em}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:2traj6}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/pairE.pdf}
\end{subfigure}
\end{figure*}%
\begin{figure*}[!ht]\ContinuedFloat\captionsetup[subfigure]{singlelinecheck=off,justification=raggedright,aboveskip=-6pt,belowskip=-6pt}
\centering
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:2traj7}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/pairF.pdf}
\end{subfigure}
\caption[Seven examples of APWP comparisons]{APWP pairs used to validate new
path comparison method. In each case the Phanerozoic APWP for Laurentia/North
America (squares, bold line) at 10 million-year (Myr) timesteps~\cite[``RM''
column of its Table 3]{T12}, is compared to a transformed copy (circles, dashed
line): (a) 1\degree\ finite rotation applied to all the mean poles and their
95\% uncertainty ellipses around an Euler pole at (125\degree\ E, 88.5\degree\
S); (b) as (a), but 15\degree\ rotation around same Euler pole; (c) after
rotation as in (b), the orientation of each APWP segment is randomised whilst
keeping their GCD length and the coeval poles' GCD fixed; (d) after rotation as
in (b), the bearing between coeval poles is randommised whilst keeping their GCD
spacing fixed; (e) as (c), but with randomly varied and relatively smaller
associated spatial uncertainty; (f) as (a), but 45\degree\ rotation around same
Euler pole; (g) as (f), but with zero associated spatial uncertainty. Azimuthal
Orthographic projection.}\phantomsection\label{fig:2traj}
\end{figure*}
\subsection{APWP Pairs Used in This Study}
To assess the performance of the evaluation method developed here, we apply it
to seven different path scenarios (Fig.~\ref{fig:2traj}) generated from
transformations of the 530\textendash0 Ma Phanerozoic APWP for
Laurentia~\citep{T12}. Almost exactly identical paths generated by rotating one
by a degree around an Euler pole at (-55\degree, 88.5\degree)
(\emph{Pair}~\textbf{\subref{fig:2traj1}}, Fig.~\ref{fig:2traj1}) represent an
ideal case of matching paths in the same spatial reference frame. Matching paths
that have been rotated out of the same reference frame by small (15\degree;
\emph{Pair}~\textbf{\subref{fig:2traj2}}, Fig.~\ref{fig:2traj2}) and large
(45\degree, \emph{Pair}~\textbf{\subref{fig:2traj6}}, Fig.~\ref{fig:2traj6})
amounts around the same rotation pole represent small and large reconstruction
errors, respectively. Random noise added to the path
(\emph{Pair}~\textbf{\subref{fig:2traj3}}, Fig.~\ref{fig:2traj3}, and
\emph{Pair}~\textbf{\subref{fig:2traj4}}, Fig.~\ref{fig:2traj4}) or the
associated uncertainties (\emph{Pair}~\textbf{\subref{fig:2traj5}},
Fig.~\ref{fig:2traj5}) represent differences in data source and/or quality. In
the final pair (\emph{Pair}~\textbf{\subref{fig:2traj7}},
Fig.~\ref{fig:2traj7}), spatial noise has been reduced by removing
\emph{Pair}~\textbf{\subref{fig:2traj6}}'s pole uncertainties.
These seven cases allow evaluation of the performance of any path comparison
metric across a range of different spatial and geometric similarities. To be
successful, such a metric must distinguish pairs with high spatial and geometric
similarity (\emph{Pair}~\textbf{\subref{fig:2traj1}}) from pairs with lower
spatial (\emph{Pair}~\textbf{\subref{fig:2traj2}},
\emph{Pair}~\textbf{\subref{fig:2traj6}},
\emph{Pair}~\textbf{\subref{fig:2traj7}})
or geometric (\emph{Pair}~\textbf{\subref{fig:2traj3}},
\emph{Pair}~\textbf{\subref{fig:2traj4}}) or both
(\emph{Pair}~\textbf{\subref{fig:2traj5}}) similarities.
To achieve more robust discrimination than the mean GCD, we propose combining a
metric for spatial misfit (Significant Spatial Difference) with metrics for
geometric difference (Significant Length Difference and Significant Angular
Difference) using a weighted linear summation, as described in the following
sections.
\subsection{Significant Spatial Difference}\label{sec:sigDs}
As in previous quantitative comparisons~\citep[for example]{S07,T08}, the
spatial separation of two APWPs is defined by the average GCD distance between
their coeval poles, but we add a filter for spatial uncertainty based on the
bootstrap approach~\citep{T91}. 1000 bootstrapped mean directions for each pole
in a coeval pair were generated (the exact sampling method is dependent on the
available information for the pole\textemdash{}see Appendix~\ref{appen4chp2} for
a full description) and their cumulative distributions in Cartesian coordinates
were compared~\citep{T91}. Pairs that could not be distinguished at the 95\%
confidence interval had their GCD separation set to 0 prior to calculation of
the mean GCD distance for all pairs. This distance is then normalised by
dividing by 50\degree, which is referred to the empirical fact that a 95\%
confidence ellipse major semi-axis of about 25\degree\ is considered
unacceptably large by paleomagnetists~\citep{B92}, to obtain the significant
spatial difference $d_s$. A $d_s$ of zero indicates that the two paths are
statistically indistinguishable from each other.
Using the same definition of $d_s$ above except testing if coeval poles are
distinguishable, the spatial difference $\Delta_s$ is defined as a comparison to
help analyze $d_s$ in the following real-data applications.
\subsection{Shape Difference}
The shape of an APWP is determined by the orientations and lengths of its
geodesic segments, which are related to the location of the Euler stage pole
that describes plate motions, and the rotation rate about that pole,
respectively. The geometric similarity of two APWPs can therefore be assessed
by comparing (i) the bearings, and (ii) the lengths of their coeval segments
(Fig.~\ref{fig:direcdiff}), with the assumption that similar geometries are
generated by a common set of stage rotations.
\begin{figure}[tbp]
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/dg1.pdf}
\caption[Geometric difference definition between two APWPs]{Geometric
differences between coeval sections of two different APWPs ({\bf
seg$_1^I$-seg$_2^I$-seg$_3^I$} \& {\bf seg$_1^{II}$-seg$_2^{II}$-seg$_3^{II}$})
can be described by comparing segment lengths (e.g.\ {\bf l$_2^I$} versus
{\bf l$_2^{II}$}) or changes in bearing of coeval segments relative to their
previous segment (e.g.\ {\bf $\alpha_3^I$} versus {\bf $\alpha_3^{II}$}).
Segments are along great circles (blue dashed lines). Azimuthal Orthographic
projection.}\label{fig:direcdiff}
\end{figure}
\subsubsection{Length Difference}
The length difference between the two APWPs $traj^I$ and $traj^{II}$ is the
absolute sum of differences between the lengths of coeval path segments (e.g.
$l_2^I$ versus $l_2^{II}$, $l_3^I$ versus $l_3^{II}$, $l_4^I$ versus $l_4^{II}$,
Fig.~\ref{fig:direcdiff}), normalised by dividing by the possible maximum
distance the pole could wander during the whole period $t_n-t_1$, such that:
%
\begin{equation*}
\Delta_l = \frac{\sum\limits_{k=2}^n | l_k^I - l_k^{II} |}{D_{polar}\times(t_n-t_1)} ,
\quad\forall k \in \{2,3,\ldots,n\},
\label{eq:ld}
\end{equation*}
%
where $|l_k^I - l_k^{II}|$ is the length difference of one pair of coeval
segments for an APWP pair ($traj^I$ and $traj^{II}$), e.g. $|l_2^I - l_2^{II}|$
for the beginning coeval segment pair. The normalising parameter $D_{polar}$ is
2.7\degree/Myr, derived from estimates of magnitude of maximum plate
velocity~\cite[up to about 30 cm/year]{S09,K14}. A $\Delta_l$ approaching 1
would result from a comparison between a virtually stationary APWP and one
associated with a rapidly moving plate.
\subsubsection{Angular Difference}
The angular difference describes the degree of consistency between the
polar-wandering directions (defined as the bearing of the older pole in a
segment with respect to the younger one) of two APWPs. In order to robustly
compare two APWPs that have not necessarily been rotated into the same reference
frame, it is more useful to define the APWP geometry relative to the path
itself, rather than an external reference frame. Therefore the bearing of a
segment is expressed as the change in geographic bearing with respect to the
previous segment ($\alpha_3$ and $\alpha_4$, Fig.~\ref{fig:direcdiff}). For
example, $\alpha_3^I$ is the result of subtracting the geographic azimuth
$\theta_{2y}^I$ from $\theta_{1o}^I$, where ``y'' stands for young end of
segment and ``o'' for old end of segment. The first segment cannot record a
relative bearing change: a path with n poles therefore consists of n-1 segments
which are described by n-2 relative angles. The defined range of bearing values
is set as -180\degree\ to 180\degree, with clockwise (east) changes in direction
defined as positive, e.g. {\bf $\alpha_3^{II}$} and {\bf $\alpha_4^{II}$}, and
anticlockwise (west) changes defined as negative, e.g. {\bf $\alpha_3^I$} and
{\bf $\alpha_4^I$}.
The angular difference $\Delta_a$ between two paths $traj^I$ and $traj^{II}$ can
then be defined as
%
\begin{equation*}
\Delta_a = \frac{\sum\limits_{k=3}^n \Delta\alpha_k}{180\times(n-2)},
\label{eq:ad}
\end{equation*}
%
where
%
\begin{equation*}
\Delta\alpha_k =
\left\{
\begin{array}{@{}ll@{}}
| \alpha_k^I - \alpha_k^{II} |, & \text{if}\ | \alpha_k^I -
\alpha_k^{II} | \leq180; \\
360 - | \alpha_k^I - \alpha_k^{II} |, &
\text{otherwise}.\quad\quad\quad\quad\quad\forall k \in \{3,4,\ldots,n\}.
\end{array}
\right.\label{eq:diffAziChange}
\end{equation*}
$\Delta_a$ is normalised by the maximum possible angular deviation of
180\degree. A score of 0 indicates exactly matching changes in the bearing of
coeval segments along the length of the two paths, and a score of 1 indicates
all segment bearings are antiparallel.
\subsubsection{Significance Testing of Shape Difference}\label{sec:shapeSigTest}
Due to associated spatial uncertainty, the mean poles in an APWP trace out one
possible path within a range of possible geometries (Fig.~\ref{fig:Fig5a}). If
the length and angular difference scores for one path fall within the range of
possible scores for the other, two APWPs may not in fact be significantly
different from each other. Significance testing for the shape difference scores
is performed on each coeval segment pair as follows (Fig.~\ref{fig:Fig5b}):
\begin{figure*}[!ht]
\captionsetup[subfigure]{singlelinecheck=off,justification=raggedright,aboveskip=-6pt,belowskip=-6pt}
\centering
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:Fig5a}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/Fig5a.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:Fig5b}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/Fig5b.pdf}
\end{subfigure}
\caption[Testing on geometry]{Significance testing for the geometric metrics,
$d_l$ and $d_a$. (a) Illustration of how paths traj$^I$ and traj$^{II}$ can be
re-sampled within their uncertainty ellipses, with B being a possible
trajectory of traj$^I$ and C being a possible trajectory of traj$^{II}$. (b)
Upper: If the 95\% confidence interval (black vertical lines are its upper and
lower bounds) for the distribution of difference scores HIST1, generated by
comparing multiple resamplings of traj$^I$ with the original trajectory (A versus B)
does not overlap with the 95\% confidence interval (bounded by white vertical
lines) for the distribution of scores HIST2, generated by comparing resamplings
of traj$^I$ and traj$^{II}$ (B versus C), then the original difference score for
traj$^I$ and traj$^{II}$ is statistically distinguishable; Lower: If the
confidence intervals overlap, then the two paths are not
distinguishable.}\label{fig:Fig5}
\end{figure*}
\begin{itemize}
\item A bootstrapped distribution of possible geometries for each segment in a
path can be created by resampling the two mean poles that define the original
segment, in the same manner as described in Section~\ref{sec:sigDs} and
Appendix~\ref{appen4chp2}.
\item A histogram of statistically indistinguishable length and/or angular
difference scores (HIST1, Fig.~\ref{fig:Fig5b}) is created by comparing the
resampled paths with the original for each $traj^I$ segment.
\item This distribution is then compared to the histogram of difference scores
created by resampling the coeval segments of $traj^I$ and $traj^{II}$ (HIST2,
Fig.~\ref{fig:Fig5b}).
\item If the two bootstrapped distributions HIST2 and HIST1 do not overlap at
the given significance level (e.g.\ the upper and lower bounds of a 95\%
confidence intervals, Fig.~\ref{fig:Fig5b}), then the difference score is
interpreted to be significant. If not, then the bearings or lengths of the
coeval segments are indistinguishable.
\end{itemize}
These tests allow a filter for spatial uncertainty to be added to the $\Delta_l$
and $\Delta_a$ metrics to define significant length difference $d_l$ and
significant angular difference $d_a$: prior to summation and normalisation, the
difference score is set to zero for the coeval segments of $traj^I$ and
$traj^{II}$ that are statistically indistinguishable.
\subsection{Composite Path Difference ($\mathcal{CPD}$)}
The three difference measures described above can be combined into a composite
path difference ($\mathcal{CPD}$) by means of a simple linear weighting rule,
%
\begin{equation*}
\mathcal{CPD} = W_s \cdot d_s + W_l \cdot d_l + W_a \cdot d_a
\label{eq:cpd}
\end{equation*}
%
for $0 < W_s,W_l,W_a < 1$, where $W_s$, $W_l$ and $W_a$ are weighting
coefficients that sum to 1. Different weighting values allow the relative
influences of spatial and geometric (length and angular) similarity to be
varied (Section~\ref{sec:wDis}).
\subsection{Fit Quality (FQ)}\label{sec:FQ}
The three metrics are all tested to be significant based on the spatial
uncertainties. However, the larger the uncertainties are, the less trustworthy
the significant difference scores are (Fig.~\ref{fig:FitQ}). Accordingly, we
bring in a concept of ``Fit Quality'', along the classification scheme of the
reversal test~\citep{M90}. For each mean pole of an APWP, it assigns a score
based on the size of the spatial uncertainty (radius: A95, or
($\mathbf{dm}+\mathbf{dp}$)/2): 1 if
it is $\leq$5\degree, 2 if 5\degree$<$r$\leq$10\degree, 3 if
10\degree$<$r$\leq$20\degree, and 4 if it is $>$20\degree. These values are
averaged for each APWP to give a ``Fit Quality'' score (from 1 to 4) for the
difference score. This is then converted into an A/B/C/D letter grade, A if the
average is $<$1.5, B if 1.5$\leq$avg$<$2.5, C if 2.5$\leq$avg$<$3.5, and D if it
is $\geq$3.5, to indicate how easy it is to generate a low difference score. In
other words, an A grade indicates that most poles are well-constrained and so it
is fairly hard to have an indistinguishable path and a low difference score. A D
grade indicates that most poles have large uncertainties so it is much easier to
have a low difference score.
In addition, a short APWP segment tends to result in overlap of its two end
poles' spatial uncertainties. For example, if an APWP is generated at intervals
of 10 Myr, the longest realistic segment-length would be about
27\degree~\cite[the maximum rate of plate movement is about 30 cm/yr]{S09,K14}.
So the uncertainty size needs be less than ${\sim}13.5$\degree\ on average to
make the segment length trustworthy. Therefore, to a certain extent, the ``Fit
Quality'' also reflects the quality of the length metric if we give each path a
grade for an APWP pair, e.g. A-A. The angular metric’s quality is related to
both coeval mean poles and successive mean poles, so it has already been
involved in the spatial and length quality. Moreover, given the fact that
usually the significant length and angular differences are much lower than
the significant spatial difference (e.g.,
Fig.~\ref{fig:sspercni},~\subref{fig:sd2ni},~\subref{fig:ld2ni},~\subref{fig:ad2ni}
and Fig.~\ref{fig:LauruG},~\subref{fig:LGsS},~\subref{fig:LGlS},~\subref{fig:LGaS}),
the ``Fit Quality'' is capable to manifest the overall quality of all the three
metrics and we should trust the difference scores if we get a B-B grade at
least.
\begin{figure}[tbp]
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/expect.pdf}
\caption{Difference scores from APWPs with large uncertainties are less
trustworthy.}\label{fig:FitQ}
\end{figure}
For example, \emph{Pairs}~\textbf{\subref{fig:2traj1}},
\textbf{\subref{fig:2traj2}}, \textbf{\subref{fig:2traj3}},
\textbf{\subref{fig:2traj4}} and~\textbf{\subref{fig:2traj6}}'s fit quality
score is all 1.809\textendash1.809, so their fit quality is B\textendash{}B,
which means that the mean poles in these APWP pairs have intermediate
uncertainties on average so it is relatively hard to have a low difference
score. \emph{Pair}~\textbf{\subref{fig:2traj5}}'s fit quality is B\textendash{}A
(1.809\textendash1.085). \emph{Pair}~\textbf{\subref{fig:2traj7}}'s fit quality
is A\textendash{}A (0\textendash0).
\section{Results and Discussion}
\subsection{Discrimination of Difference Metrics}
The performance of the individual metrics were tested by generating and ranking
scores for each pair in Fig.~\ref{fig:2traj}. Scores for comparisons of the full
530 Myr paths, and sequential 100\textendash130 Myr subsections were calculated
for path pairs with (Fig.~\ref{fig:ssperc}) and without
(Fig.~\ref{fig:sspercni}) poles with zero spatial uncertainties at 350 Ma, 360
Ma, 380 Ma, 390 Ma, 450 Ma, 460 Ma and 520 Ma calculated using linear
interpolation by~\citet{T12}.
\subsubsection{$d_s$}
If ordered only in terms of spatial similarity, the desired order for the seven
APWP pairs (Fig.~\ref{fig:2traj}), from most similar (lowest $d_s$) to least
similar (highest $d_s$) is
%
\begin{equation}
\emph{Pair}~\textbf{\subref{fig:2traj1}} <
\emph{Pair}~\textbf{\subref{fig:2traj2}} \approx
\emph{Pair}~\textbf{\subref{fig:2traj3}} \approx
\emph{Pair}~\textbf{\subref{fig:2traj4}} <
\emph{Pair}~\textbf{\subref{fig:2traj5}} <
\emph{Pair}~\textbf{\subref{fig:2traj6}} <
\emph{Pair}~\textbf{\subref{fig:2traj7}}.
\label{eq:expOrds}
\end{equation}
This ordering is based largely on the mean GCD separations of each pair
(Fig.~\ref{fig:2traj}), but also takes uncertainties into account: the
relatively smaller uncertainty ellipses of
\emph{Pair}~\textbf{\subref{fig:2traj5}} and
\emph{Pair}~\textbf{\subref{fig:2traj7}} should lead to a higher $d_s$ than
\emph{Pairs}~\textbf{\subref{fig:2traj2}}-\textbf{\subref{fig:2traj4}} and
\emph{Pair}~\textbf{\subref{fig:2traj6}}, respectively. Without significance
testing, $\Delta_s$ is directly proportional to mean GCD (Fig.~\ref{fig:sd1}),
which does not result in unique $\Delta_s$ for
\emph{Pair}~\textbf{\subref{fig:2traj5}} and
\emph{Pair}~\textbf{\subref{fig:2traj7}}. Significance testing reproduces the
desired order (Fig.~\ref{fig:sd2}).
Most $d_s$ scores are also reduced with significance testing, with the largest
reductions occurring where the path separations are low and 95\% confidence
ellipses for coeval poles are more likely to overlap (e.g., $d_s$ for
\emph{Pair}~\textbf{\subref{fig:2traj1}} is reduced by 85\%, $d_s$ for
\emph{Pair}~\textbf{\subref{fig:2traj6}} is reduced by $<$2\%). $d_s$ that
approach 0 for the 0\textendash100 Ma and 100\textendash200 Ma sub-paths, which
are located close to the Euler pole used to separate the pairs and therefore
remain in close proximity even after large rotations, also illustrate this
effect. With significance testing, the 0\textendash100 and 100\textendash200 Ma
sub-paths of \emph{Pair}~\textbf{\subref{fig:2traj6}} and
\emph{Pair}~\textbf{\subref{fig:2traj7}} can still be distinguished
(Fig.~\ref{fig:sd2ni} and also Fig.~\ref{fig:sd2}), due to no spatial
uncertainty assigned to \emph{Pair}~\textbf{\subref{fig:2traj7}}. In contrast,
the older 300\textendash400 Ma and 400\textendash530 Ma sub-paths have a larger
$d_s$ than the whole path. This is because the 350 Ma, 360 Ma, 380 Ma, 390 Ma,
450 Ma, 460 Ma and 520 Ma pole coordinates are interpolated~\citep{T12}, and
thus have no assigned spatial uncertainty on any of the test paths. Without the
interpolated poles, $d_s$ is always zero for
\emph{Pair}~\textbf{\subref{fig:2traj1}} and any of its sub-paths
(Fig.~\ref{fig:sd2ni}), which is expected.
Even with significance testing, $d_s$ for
\emph{Pairs}~\textbf{\subref{fig:2traj2}}-\textbf{\subref{fig:2traj4}} are the
same (Fig.~\ref{fig:ssperc},~\subref{fig:sd1},~\subref{fig:sd2}) despite their different
geometries (Fig.~\ref{fig:2traj},~\subref{fig:2traj2},~\subref{fig:2traj3}
and~\subref{fig:2traj4}), because GCDs between coeval poles and their
uncertainties are the same. This result emphasises that a spatial difference
metric alone cannot discriminate these pairs from each other. The comparison of
\emph{Pairs}~\textbf{\subref{fig:2traj3}} and \textbf{\subref{fig:2traj5}}
indicates that well-constrained mean poles with lower uncertainties make it
relatively harder to have an indistinguishable APWP and a low difference score.
\begin{figure*}[!ht]
\captionsetup[subfigure]{singlelinecheck=off,justification=raggedright,aboveskip=-6pt,belowskip=-6pt}
\centering
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:sd1}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/mean_s_dif.pdf}
\end{subfigure}
\vspace{.5em}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:sd2}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/ds.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:ld1}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/mean_l_dif.pdf}
\end{subfigure}
\vspace{.5em}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:ld2}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/dl.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:ad1}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/mean_a_dif.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:ad2}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/da.pdf}
\end{subfigure}
\caption[Spatial, length, angular differences and significant differences of
seven exaple APWP pairs]{Spatial, length and angular differences between two
paths of the seven APWP pairs shown in Fig.~\ref{fig:2traj}. Left column:
results without significance testing imposed in the metric; Right column:
results with significance testing. Note that the spatial difference results of
\emph{Pairs}~\textbf{\subref{fig:2traj2}},~\textbf{\subref{fig:2traj3}}
and~\textbf{\subref{fig:2traj4}} are always the same for both the untested case
(a) and the tested case (b). In addition, for those segments that do not begin
from 0 Ma, their beginning segments are different from the 0\textendash100 Ma
sub-path's and the full path's. For example, for the 200\textendash300 Ma
sub-path, its beginning segment is the 200\textendash210 Ma
one.}\label{fig:ssperc}
\end{figure*}
\begin{figure*}[!ht]
\captionsetup[subfigure]{singlelinecheck=off,justification=raggedright,aboveskip=-6pt,belowskip=-6pt}
\centering
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:sd1ni}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/mean_s_difni.pdf}
\end{subfigure}
\vspace{.5em}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:sd2ni}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/dsni.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:ld1ni}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/mean_l_difni.pdf}
\end{subfigure}
\vspace{.5em}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:ld2ni}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/dlni.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:ad1ni}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/mean_a_difni.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:ad2ni}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/dani.pdf}
\end{subfigure}
\caption[Spatial, length, angular differences and significant differences of
seven exaple APWP pairs (without interpolations)]{Spatial, length and angular
differences between two paths of the seven APWP pairs with no interpolated poles
shown in Fig.~\ref{fig:2traj}. Left column: results without significance testing
imposed in the metric; Right column: results with significance testing. See
explanation of Fig.~\ref{fig:ssperc}.}\label{fig:sspercni}
\end{figure*}
In summary, as Fig.~\ref{fig:sd2ni} and also Fig.~\ref{fig:sd2} illustrate,
$d_s$, scaling with mean significant GCD, reproduces the expected order of
spatial similarity (Order (\ref{eq:expOrds})) for the full path. It also
compensates for the deficiency of the algorithm without statistical test
(Fig.~\ref{fig:sd1ni} and Fig.~\ref{fig:sd1}) in differentiating
\emph{Pair}~\textbf{\subref{fig:2traj6}} and
\emph{Pair}~\textbf{\subref{fig:2traj7}}. Although our algorithm also works for
APWPs with interpolations (e.g., Fig.~\ref{fig:ssperc}; see how we do
significance testing on the interpolated mean poles in
Appendix~\ref{appen4chp2}), a meaningful and valid analysis should be based on
the results with uninterpolated paleomagnetic APWPs (e.g.,
Fig.~\ref{fig:sspercni}).
\subsubsection{$d_l$}
When ordered only according to the length similarity $d_l$ the expected order is
%
\begin{equation}
0 = \emph{Pair}~\textbf{\subref{fig:2traj1}} =
\emph{Pair}~\textbf{\subref{fig:2traj2}} =
\emph{Pair}~\textbf{\subref{fig:2traj3}} =
\emph{Pair}~\textbf{\subref{fig:2traj5}} =
\emph{Pair}~\textbf{\subref{fig:2traj6}} =
\emph{Pair}~\textbf{\subref{fig:2traj7}} <
\emph{Pair}~\textbf{\subref{fig:2traj4}}
\label{eq:expOrdl}
\end{equation}
Because only the path generated for \emph{Pair}~\textbf{\subref{fig:2traj4}}
allowed the length of coeval segments to vary, it is expected that other five
pairs of APWPs have zero $d_l$ for both the full-path and the five specified
sub-paths even prior to significance testing
(Fig.~\ref{fig:sspercni},~\subref{fig:ld1ni},~\subref{fig:ld2ni}), and this
expected order is trivially reproduced. The effect of significance testing
(Fig.~\ref{fig:ld2ni}) is to substantially reduce $d_l$. Many segment length
differences do not pass the significance test because the angular uncertainties
of the poles that define individual segments are large compared to the length of
those segments.
\subsubsection{$d_a$}
If ordered only according to angular similarity $d_a$, the expected order is
%
\begin{equation}
0 = \emph{Pair}~\textbf{\subref{fig:2traj1}} =
\emph{Pair}~\textbf{\subref{fig:2traj2}} =
\emph{Pair}~\textbf{\subref{fig:2traj6}} =
\emph{Pair}~\textbf{\subref{fig:2traj7}} \leq
\emph{Pair}~\textbf{\subref{fig:2traj3}} \leq
\emph{Pair}~\textbf{\subref{fig:2traj4}} \stackrel{?}{<}
\emph{Pair}~\textbf{\subref{fig:2traj5}}
\label{eq:expOrda}
\end{equation}
Because path geometries are not altered by a simple Euler rotation, only
\emph{Pairs}~\textbf{\subref{fig:2traj3}}, \textbf{\subref{fig:2traj4}} and
\textbf{\subref{fig:2traj5}} are expected to have a non-zero $d_a$. $d_a$ for
\emph{Pair}~\textbf{\subref{fig:2traj4}} and
\emph{Pair}~\textbf{\subref{fig:2traj5}} should be larger than
\emph{Pair}~\textbf{\subref{fig:2traj3}}'s due to more geometric variation and
lower spatial uncertainties, respectively, although the expected ordering of
\emph{Pair}~\textbf{\subref{fig:2traj4}} and
\emph{Pair}~\textbf{\subref{fig:2traj5}} is less immediately obvious from visual
inspection.
Without significance testing, non-zero $\Delta_a$ for
\emph{Pairs}~\textbf{\subref{fig:2traj3}}, \textbf{\subref{fig:2traj4}} and
\textbf{\subref{fig:2traj5}} are consistently generated for both the full path
and sub-paths (Fig.~\ref{fig:ad1ni}). $\Delta_a$ for
\emph{Pair}~\textbf{\subref{fig:2traj4}} is usually higher
(Fig.~\ref{fig:ad1ni}), but there is no discrimination between
\emph{Pairs}~\textbf{\subref{fig:2traj3}} and \textbf{\subref{fig:2traj5}},
which have the same score because geometrically they are identical. When
significance testing is applied $d_a$ is markedly reduced
(Fig.~\ref{fig:sspercni},~\subref{fig:ad2ni} versus~\subref{fig:ad1ni}), and is
actually reduced to 0 for the two youngest and oldest sub-paths in all cases.
This is somewhat expected because the segment lengths of the APWPs being tested
are often of the same order as the angular uncertainty in their spatial
position. As a result, a large range of different path geometries are possible
within the specified uncertainty bounds, and the bearing of coeval segments has
to be very large for the difference to be significant.
For the full paths and the 200\textendash300 and 300\textendash400 Ma sub-paths
where $d_a$ after significance testing is non-zero for
\emph{Pairs}~\textbf{\subref{fig:2traj4}}, \textbf{\subref{fig:2traj5}} and
(usually) \textbf{\subref{fig:2traj3}}, \emph{Pair}~\textbf{\subref{fig:2traj5}}
can now be discriminated from \emph{Pair}~\textbf{\subref{fig:2traj3}}, and
consistently has the highest $d_a$ of the 3 pairs.
In summary, our angular difference algorithm with statistical test
(Fig.~\ref{fig:ad2ni}) reproduces the expected order of angular similarity
(Order (\ref{eq:expOrda})).
\subsubsection{$\mathcal{CPD}$}
When the seven different APWP pairs (Fig.~\ref{fig:2traj}) are rank-ordered in
terms of the three criteria combined, their expected order is
%
\begin{equation}
\emph{Pair}~\textbf{\subref{fig:2traj1}} <
\emph{Pair}~\textbf{\subref{fig:2traj2}} \leq
\emph{Pair}~\textbf{\subref{fig:2traj3}} <
\emph{Pair}~\textbf{\subref{fig:2traj4}} \stackrel{?}{<}
\emph{Pair}~\textbf{\subref{fig:2traj5}} \stackrel{?}{<}
\emph{Pair}~\textbf{\subref{fig:2traj6}} <
\emph{Pair}~\textbf{\subref{fig:2traj7}}
\label{eq:expOrd}
\end{equation}
In order to be useful, a path difference metric needs to reproduce this order.
Note that a question mark is put on top of the ``less than'' symbols between
\emph{Pairs}~\textbf{\subref{fig:2traj4}} and~\textbf{\subref{fig:2traj5}}, and
\emph{Pairs}~\textbf{\subref{fig:2traj5}} and~\textbf{\subref{fig:2traj6}}
because when comparing pairs with different spatial separation, geometric
difference, and relative spatial uncertainty, it can be hard to objectively
define which ``should'' have the highest similarity, and the ordering will
depend on the relative weighting of $d_s$, $d_l$ and $d_a$. If the weightings
are equal (i.e, $W_s=W_l=W_a=\frac{1}{3}$), significant $\mathcal{CPD}$ scores
for paths without interpolated poles (i.e., using scores from
Fig.~\ref{fig:sspercni}) reproduce the expected order:
%
\begin{equation*}
\textbf{\subref{fig:2traj1}} (0) < \textbf{\subref{fig:2traj2}} (0.036) <
\textbf{\subref{fig:2traj3}} (0.043) < \textbf{\subref{fig:2traj4}} (0.067)
\approx \textbf{\subref{fig:2traj5}} (0.067) <
\textbf{\subref{fig:2traj6}} (0.174) < \textbf{\subref{fig:2traj7}} (0.177),
\end{equation*}
%
however \emph{Pairs}~\textbf{\subref{fig:2traj4}}
and~\textbf{\subref{fig:2traj5}} have almost identical scores and are not
discriminated. However, their fit quality (B-B for
\emph{Pair}~\textbf{\subref{fig:2traj4}} and B-A for
\emph{Pair}~\textbf{\subref{fig:2traj5}};
Fig.~\ref{fig:sspercni},~\subref{fig:sd2ni},~\subref{fig:ld2ni}
and~\subref{fig:ad2ni}) indicates that
\emph{Pair}~\textbf{\subref{fig:2traj5}}'s $\mathcal{CPD}$ is relatively more
trustworthy. This order might also not be preserved with different applied
weights. The impact of weighting will be discussed in the following section.
\subsection{A Discussion on Weights}\label{sec:wDis}
Although $W_s$, $W_l$ and $W_a$ can be defined by user, this is subjective.
However, we do explicitly know that: when comparing two APWP pairs, our aim is
to find the one whose similarity ranks higher. A simple subtraction between
unsolved (because of unknown weights) $\mathcal{CPD}s$ can help determine
which pair's similarity ranks higher. If a positive difference is obtained, no
matter what $W_s$, $W_l$ and $W_a$ values are assigned, the subtrahend pair's
similarity ranks higher; if the difference is always negative, the minuend
pair's similarity is always higher. In addition, the difference could be always
zero. Interpretation is straightforward in these three scenarios. However, for
some pairs, a positive, zero or negative $\mathcal{CPD}$ difference could result
depending on the chosen weightings.
For example, for the full (i.e., 0\textendash530 Ma) path with no interpolated
poles, the significant spatial, length and angular differences $d_s$, $d_l$ and
$d_a$ are known (Fig.~\ref{fig:sspercni},~\subref{fig:sd2ni},~\subref{fig:ld2ni}
and~\subref{fig:ad2ni}). Also we know $W_l=1-W_s-W_a$. Then we do subtractions of
$\mathcal{CPD}s$ from each two APWP pairs:
%
\setcounter{equation}{0} %reset the equation counter
\begin{equation}
\left\{
\begin{array}{lllllllllllllll}
D_{full}^{b-a} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj2}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj1}}}
= 0.109 W_s \\
D_{full}^{c-a} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj3}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj1}}}
= 0.109 W_s + 0.02 W_a \\
D_{full}^{d-a} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj4}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj1}}}
= 0.038 W_s - 0.029 W_a + 0.061 \\
D_{full}^{e-a} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj5}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj1}}}
= 0.153 W_s + 0.047 W_a \\
D_{full}^{f-a} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj6}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj1}}}
= 0.522 W_s \\
D_{full}^{g-a} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj7}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj1}}}
= 0.532 W_s \\
D_{full}^{c-b} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj3}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj2}}}
= 0.02 W_a \\
D_{full}^{d-b} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj4}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj2}}}
= -0.061 W_s - 0.029 W_a + 0.061 \\
D_{full}^{e-b} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj5}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj2}}}
= 0.044 W_s + 0.047 W_a \\
D_{full}^{f-b} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj6}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj2}}}
= 0.413 W_s \\
D_{full}^{g-b} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj7}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj2}}}
= 0.423 W_s \\
D_{full}^{d-c} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj4}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj3}}}
= -0.061 W_s - 0.049 W_a + 0.061 \\
D_{full}^{e-c} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj5}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj3}}}
= 0.044 W_s + 0.027 W_a \\
D_{full}^{f-c} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj6}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj3}}}
= 0.413 W_s - 0.02 W_a \\
D_{full}^{g-c} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj7}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj3}}}
= 0.423 W_s - 0.02 W_a \\
D_{full}^{e-d} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj5}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj4}}}
= 0.105 W_s + 0.076 W_a - 0.061 \\
D_{full}^{f-d} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj6}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj4}}}
= 0.474 W_s + 0.029 W_a - 0.061 \\
D_{full}^{g-d} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj7}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj4}}}
= 0.484 W_s + 0.029 W_a - 0.061 \\
D_{full}^{f-e} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj6}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj5}}}
= 0.369 W_s - 0.047 W_a \\
D_{full}^{g-e} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj7}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj5}}}
= 0.379 W_s - 0.047 W_a \\
D_{full}^{g-f} = \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj7}}} - \mathcal{CPD}_{full}^{\textbf{\subref{fig:2traj6}}}
= 0.01 W_s,
\end{array}
\right.\label{eq:equationSet}
\end{equation}
%
and we also have the following constraints of feasible regions
%
\begin{equation}
\left\{
\begin{array}{lll}
0 < W_s < 1 \\
0 < W_a < 1 \\
0 < W_s + W_a < 1.
\end{array}
\right.\label{eq:equationSet2}
\end{equation}
The linear equations (\ref{eq:equationSet}) subject to (\ref{eq:equationSet2})
can be graphed in the three-variable ($W_s\textrm{--}W_a\textrm{--}D$)
coordinate system (Fig.~\ref{fig:pair-cmp}). For all possible combinations of
$W_s$ and $W_a$, there is a consistent ordering of $\mathcal{CPD}$ scores such
that \textbf{\subref{fig:2traj1}} $<$ \textbf{\subref{fig:2traj2}} $<$
\textbf{\subref{fig:2traj3}} $<$ \textbf{\subref{fig:2traj4}},
\textbf{\subref{fig:2traj1}} $<$ \textbf{\subref{fig:2traj2}} $<$
\textbf{\subref{fig:2traj3}} $<$ \textbf{\subref{fig:2traj5}}, and
\textbf{\subref{fig:2traj1}} $<$ \textbf{\subref{fig:2traj2}} $<$
\textbf{\subref{fig:2traj6}} $<$ \textbf{\subref{fig:2traj7}}
(Fig.~\ref{fig:pair-cmp}). However, the ranking for
\emph{Pairs}~\textbf{\subref{fig:2traj6}},~\textbf{\subref{fig:2traj7}} and
\emph{Pairs}~\textbf{\subref{fig:2traj3}},~\textbf{\subref{fig:2traj4}},~\textbf{\subref{fig:2traj5}},
or \emph{Pair}~\textbf{\subref{fig:2traj4}} and
\emph{Pair}~\textbf{\subref{fig:2traj5}} has multiple possibilities, because
their differences can be positive, negative or zero (Fig.~\ref{fig:pair-cmp}).
For this situation, assigning equal weights is recommended (giving centroid of
all possible $D$s, Fig.~\ref{fig:pair-cmp}; see also Appendix~\ref{appen4chp2}
for testing equally likely random weights) for deciding the rank order. With
equal weights used, the order from most similar pair to least similar pair is
\textbf{\subref{fig:2traj1}} $<$ \textbf{\subref{fig:2traj2}} $<$
\textbf{\subref{fig:2traj3}} $<$ \textbf{\subref{fig:2traj4}} $\approx$
\textbf{\subref{fig:2traj5}} $<$ \textbf{\subref{fig:2traj6}} $<$
\textbf{\subref{fig:2traj7}}.
These conclusions do not contradict the expected Order (\ref{eq:expOrd}).
\begin{figure}[tbp]
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/xyz1.pdf}
\end{figure}
\begin{figure}[!ht]
\addtocounter{figure}{1}
\ContinuedFloat\caption[Criteria of pair comparisons]{Graphical depiction of $\mathcal{CPD}$
differences ($D$) between the seven APWP pairs for full-path (0\textendash530
Ma) comparisons. If the planes derived from the equations intersect the $D=0$
plane at a point or in a straight line, that point or the infinite number of
points (i.e., sets of $W_s$, $W_a$ values) on the line of intersection represent
that the similarities of the minuend pair and the subtrahend pair are equal to
each other. If $D>0$ or $D<0$ on the planes of the equations, the subtrahend
pair or the minuend pair respectively owns higher similarities. The square dot
locates the result when $W_s=W_l=W_a=\frac{1}{3}$.}\label{fig:pair-cmp}
\end{figure}
In summary, as Fig.~\ref{fig:2traj} illustrates, mean GCD has trouble
discriminating between \emph{Pairs}~\textbf{\subref{fig:2traj6}}
and~\textbf{\subref{fig:2traj7}}, and \emph{Pairs}~\textbf{\subref{fig:2traj3}}
and~\textbf{\subref{fig:2traj5}}, and also between intermediate
similarities where the differences are mainly in path geometry
(\emph{Pairs}~\textbf{\subref{fig:2traj2}},~\textbf{\subref{fig:2traj3}},~\textbf{\subref{fig:2traj4}}).
Our algorithm provides an improved solution for this problem. Obtaining
similarity order can be straightforward, such as for
\emph{Pairs}~\textbf{\subref{fig:2traj1}}, \textbf{\subref{fig:2traj2}},
\textbf{\subref{fig:2traj3}}, and \textbf{\subref{fig:2traj4}},
\emph{Pairs}~\textbf{\subref{fig:2traj1}}, \textbf{\subref{fig:2traj2}},
\textbf{\subref{fig:2traj3}}, and \textbf{\subref{fig:2traj5}}, or
\emph{Pairs}~\textbf{\subref{fig:2traj1}}, \textbf{\subref{fig:2traj2}},
\textbf{\subref{fig:2traj6}}, and \textbf{\subref{fig:2traj7}}. In other words,
when one APWP's three individual metrics are all greater than or equal to, or
less than or equal to the other one's, weighting is irrelevant. However, when
the ranking of individual metrics for a pair are not consistent (e.g.,
\emph{Pair}~\textbf{\subref{fig:2traj6}} and
\emph{Pair}~\textbf{\subref{fig:2traj3}}; Fig.~\ref{fig:pair-cmp}), obtaining
similarity order is less straightforward. When this occurs, equally weighting is
recommended for concluding the final rank order.
\subsection{Application to Real Paleomagnetic Data}
To illustrate how these metrics might be useful when applied to real
paleomagnetic data, we compare 320\textendash0 Ma APWPs for Gondwana and
Laurussia calculated using a running mean method by~\citet{T12}, with paleopoles
from sedimentary rocks both uncorrected (Fig.~\ref{fig:T12Fig13a}a) and bulk
corrected for inclination shallowing (f=0.6; Fig.~\ref{fig:T12Fig13a}b).
\begin{figure}[tbp]
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/not_rot_yet3.pdf}
\end{figure}
\begin{figure}[!ht]
\addtocounter{figure}{1}
\ContinuedFloat\caption[Reproducing Torsvik et al. 2012 Earth Sci Rev
Fig.13a]{(a) 320\textendash0 Ma APWPs (10 Myr step) for Gondwana and
Laurussia~\cite[rotated to Southern Africa frame using the rotations
from]{T12}; (b) as (a), but both paths corrected for inclination shallowing;
(c) and (d) as (a), but only Laurussia path and only Gondwana path
respectively corrected for inclination shallowing. Note that all the
paleomagnetic APWPs are reproduced using the same moving average method and
same paleopoles for the APWPs in Figure 13(a) of~\citet{T12}. Azimuthal
Orthographic projection.}\label{fig:T12Fig13a}
\end{figure}
\begin{figure*}[!ht]
\captionsetup[subfigure]{singlelinecheck=off,justification=raggedright,aboveskip=-6pt,belowskip=-6pt}
\centering
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:LGs}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/LauruGond320s.pdf}
\end{subfigure}
\vspace{.5em}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:LGsS}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/LauruGond320sSig.pdf}
\end{subfigure}
\begin{subfigure}[htbp]{.495\textwidth}
\centering
\caption{}\label{fig:LGl}
\includegraphics[width=1\linewidth]{../../paper/tex/ComputGeosci/figures/LauruGond320l.pdf}
\end{subfigure}
\vspace{.5em}