This repository contains source code for the TaBERT
model, a pre-trained language model for learning joint representations of natural language utterances and (semi-)structured tables for semantic parsing. TaBERT
is pre-trained on a massive corpus of 26M Web tables and their associated natural language context, and could be used as a drop-in replacement of a semantic parsers original encoder to compute representations for utterances and table schemas (columns).
First, install the conda environment tabert
with supporting libraries.
bash scripts/setup_env.sh
Once the conda environment is created, install TaBERT
using the following command:
conda activate tabert
pip install --editable .
Integration with HuggingFace's pytorch-transformers Library is still WIP. While all the pre-trained models were developed based on the old version of the library pytorch-pretrained-bert
, they are compatible with the the latest version transformers
. The conda environment will install both versions of the transformers library, and TaBERT
will use pytorch-pretrained-bert
by default. You could uninstall the pytorch-pretrained-bert
library if you prefer using TaBERT
with the latest version of transformers
.
Pre-trained models could be downloaded from this Google Drive shared folder. Please uncompress the tarball files before usage.
Pre-trained models could be downloaded from command line as follows:
pip install gdown
# TaBERT_Base_(k=1)
gdown 'https://drive.google.com/uc?id=1-pdtksj9RzC4yEqdrJQaZu4-dIEXZbM9'
# TaBERT_Base_(K=3)
gdown 'https://drive.google.com/uc?id=1NPxbGhwJF1uU9EC18YFsEZYE-IQR7ZLj'
# TaBERT_Large_(k=1)
gdown 'https://drive.google.com/uc?id=1eLJFUWnrJRo6QpROYWKXlbSOjRDDZ3yZ'
# TaBERT_Large_(K=3)
gdown 'https://drive.google.com/uc?id=17NTNIqxqYexAzaH_TgEfK42-KmjIRC-g'
To load a pre-trained model from a checkpoint file:
from table_bert import TableBertModel
model = TableBertModel.from_pretrained(
'path/to/pretrained/model/checkpoint.bin',
)
To produce representations of natural language text and and its associated table:
from table_bert import Table, Column
table = Table(
id='List of countries by GDP (PPP)',
header=[
Column('Nation', 'text', sample_value='United States'),
Column('Gross Domestic Product', 'real', sample_value='21,439,453')
],
data=[
['United States', '21,439,453'],
['China', '27,308,857'],
['European Union', '22,774,165'],
]
).tokenize(model.tokenizer)
# To visualize table in an IPython notebook:
# display(table.to_data_frame(), detokenize=True)
context = 'show me countries ranked by GDP'
# model takes batched, tokenized inputs
context_encoding, column_encoding, info_dict = model.encode(
contexts=[model.tokenizer.tokenize(context)],
tables=[table]
)
For the returned tuple, context_encoding
and column_encoding
are PyTorch tensors
representing utterances and table columns, respectively. info_dict
contains useful
meta information (e.g., context/table masks, the original input tensors to BERT) for
downstream application.
context_encoding.shape
>>> torch.Size([1, 7, 768])
column_encoding.shape
>>> torch.Size([1, 2, 768])
Use Vanilla BERT To initialize a TaBERT model from the parameters of BERT:
from table_bert import TableBertModel
model = TableBertModel.from_pretrained('bert-base-uncased')
TaBERT could be used as a general-purpose representation learning layer for semantic parsing tasks over database tables.
Example applications could be found under the examples
folder.
The following libraries are used for data extraction:
jnius
info.bliki.wiki
- wikitextparser
- Beautiful Soup 4
- Java Wikipedia code located at
contrib/wiki_extractor
- It compiles to a
.jar
file using maven, which is also included in the folder
- It compiles to a
jdk
12+
Fist, you need to install Java JDK. Then use the following command to install necessary Python libraries.
pip install -r preprocess/requirements.txt
python -m spacy download en_core_web_sm
Details of the dataset could be found at here. We used the English relational tables split, which could be downloaded at here.
The script to preprocess the data is at scripts/preprocess_commoncrawl_tables.sh
.
The following command pre-processes a sample
of the whole WDC dataset. To preprocess the whole dataset, simply replace
the input_file
with the root folder of the downloaded tar ball files.
mkdir -p data/datasets
wget http://data.dws.informatik.uni-mannheim.de/webtables/2015-07/sample.gz -P data/datasets
gzip -d < data/datasets/sample.gz > data/datasets/commoncrawl.sample.jsonl
python \
-m preprocess.common_crawl \
--worker_num 12 \
--input_file data/datasets/commoncrawl.sample.jsonl \
--output_file data/preprocessed_data/common_crawl.preprocessed.jsonl
The script to extract Wiki tables is at scripts/extract_wiki_tables.sh
. It demonstrates
extracting tables from a sampled Wikipedia dump. Again, you may need the full Wikipedida dump
to perform data extraction.
Extract Tables from Scraped HTML Pages
Most code in preprocess.extract_wiki_data
is for extracting surrounding
natural language sentences around tables. If you are only interested in
extracting tables (e.g., from scraped Wiki Web pages), you could just use
the extract_table_from_html
function. See the comments for more details.
This section documents how to generate training data for masked language modeling training from extracted and preprocessed tables.
The scripts to generate training data for our vanilla TaBERT(K=1)
and vertical attention
TaBERT(k=3)
models are utils/generate_vanilla_tabert_training_data.py
and
utils/generate_vertical_tabert_training_data.py
. They are heavily optimized for generating
data in parallel in a distributed compute environment, but could still be used locally.
The following script assumes you have concatenated
the .jsonl
files obtained from running the data extraction scripts on Wikipedia and CommonCrawl
corpora and saved to data/preprocessed_data/tables.jsonl
cd data/preprocessed_data
cat common_crawl.preprocessed.jsonl wiki_tables.jsonl > tables.jsonl
The following script generates training data for a vanilla TaBERT(K=1)
model:
output_dir=data/train_data/vanilla_tabert
mkdir -p ${output_dir}
python -m utils.generate_vanilla_tabert_training_data \
--output_dir ${output_dir} \
--train_corpus data/preprocessed_data/tables.jsonl \
--base_model_name bert-base-uncased \
--do_lower_case \
--epochs_to_generate 15 \
--max_context_len 128 \
--table_mask_strategy column \
--context_sample_strategy concate_and_enumerate \
--masked_column_prob 0.2 \
--masked_context_prob 0.15 \
--max_predictions_per_seq 200 \
--cell_input_template 'column|type|value' \
--column_delimiter "[SEP]"
The following script generates training data for a TaBERT(K=3)
model with
vertical self-attention:
output_dir=data/train_data/vertical_tabert
mkdir -p ${output_dir}
python -m utils.generate_vertical_tabert_training_data \
--output_dir ${output_dir} \
--train_corpus data/preprocessed_data/tables.jsonl \
--base_model_name bert-base-uncased \
--do_lower_case \
--epochs_to_generate 15 \
--max_context_len 128 \
--table_mask_strategy column \
--context_sample_strategy concate_and_enumerate \
--masked_column_prob 0.2 \
--masked_context_prob 0.15 \
--max_predictions_per_seq 200 \
--cell_input_template 'column|type|value' \
--column_delimiter "[SEP]"
Parallel Data Generation The script has two additional arguments, --global_rank
and
--world_size
. To generate training data in parallel using N
processes, just fire up
N
processes with the same set of arguments and --world_size=N
. The argument --global_rank
is set to [1, 2, ..., N]
for each process.
Our models are trained on a cluster of 32GB Tesla V100 GPUs. The following script demonstrates
training a vanilla TaBERT(k=1)
model using a single GPU with gradient accumulation:
mkdir -p data/runs/vanilla_tabert
python train.py \
--task vanilla \
--data-dir data/train_data/vanilla_tabert \
--output-dir data/runs/vanilla_tabert \
--table-bert-extra-config '{}' \
--train-batch-size 8 \
--gradient-accumulation-steps 32 \
--learning-rate 2e-5 \
--max-epoch 10 \
--adam-eps 1e-08 \
--weight-decay 0.0 \
--fp16 \
--clip-norm 1.0 \
--empty-cache-freq 128
The following script shows training a TaBERT(k=3)
model with vertical self-attention:
mkdir -p data/runs/vertical_tabert
python train.py \
--task vertical_attention \
--data-dir data/train_data/vertical_tabert \
--output-dir data/runs/vertical_tabert \
--table-bert-extra-config '{"base_model_name": "bert-base-uncased", "num_vertical_attention_heads": 6, "num_vertical_layers": 3, "predict_cell_tokens": true}' \
--train-batch-size 8 \
--gradient-accumulation-steps 64 \
--learning-rate 4e-5 \
--max-epoch 10 \
--adam-eps 1e-08 \
--weight-decay 0.01 \
--fp16 \
--clip-norm 1.0 \
--empty-cache-freq 128
Distributed training with multiple GPUs is similar to XLM.
If you plan to use TaBERT
in your project, please consider citing our paper:
@inproceedings{yin20acl,
title = {Ta{BERT}: Pretraining for Joint Understanding of Textual and Tabular Data},
author = {Pengcheng Yin and Graham Neubig and Wen-tau Yih and Sebastian Riedel},
booktitle = {Annual Conference of the Association for Computational Linguistics (ACL)},
month = {July},
year = {2020}
}
TaBERT is CC-BY-NC 4.0 licensed as of now.