Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can you share the training configs? #6

Open
leexinhao opened this issue Jun 25, 2023 · 1 comment
Open

Can you share the training configs? #6

leexinhao opened this issue Jun 25, 2023 · 1 comment

Comments

@leexinhao
Copy link

No description provided.

@farewellthree
Copy link
Owner

farewellthree commented Jul 28, 2023

Sorry, for the late reply. I have reimplemented the STAN using mmcv2.0. Here is the training config on msrvtt.

base = '../../base/default_runtime.py'
model = dict(
type='CLIPSimilarity_split',
visual_encoder=dict(type='VITCLIPPretrained_STAN', depth=4, clip_weight="ckpt/clip/B32"),
text_encoder=dict(type='CLIPTextPretrained', clip_weight="ckpt/clip/B32"),
to_float32=True,
frozen_layers=-1,
data_preprocessor=dict(
type='MultiModalDataPreprocessor',
preprocessors=dict(
imgs=dict(
type='ActionDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.3751],
format_shape='NCHW'),
text=dict(type='ActionDataPreprocessor', to_float32=False))),
tau = 0.01,
adapter=None)

dataset_type = 'MsrvttDataset'
data_root = 'data/video_retrieval/msrvtt'
file_client_args = dict(io_backend='disk')
train_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='UniformSample', clip_len=12, num_clips=1),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='RandomResizedCrop'),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='FormatShape', input_format='NCHW'),
dict(type='CLIPTokenize', length=32),
dict(type='PackActionInputs', collect_keys=('imgs', 'text'))
]
val_pipeline = [
dict(type='DecordInit', **file_client_args),
dict(type='UniformSample', clip_len=12, num_clips=1, test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 224)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='CLIPTokenize', length=32),
dict(type='PackActionInputs', collect_keys=('imgs', 'text'))
]
test_pipeline = val_pipeline

train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file='train_9k.json',
data_root=data_root,
data_prefix=dict(video='videos'),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file='test_JSFUSION.json',
data_root=data_root,
data_prefix=dict(video='videos'),
pipeline=val_pipeline,
test_mode=True))
test_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
ann_file='test_JSFUSION.json',
data_root=data_root,
data_prefix=dict(video='videos'),
pipeline=test_pipeline,
test_mode=True))

val_evaluator = dict(type='RetrievalMetric')
test_evaluator = val_evaluator

train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=20, val_begin=1, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

param_scheduler = [
dict(
type='LinearLR',
start_factor=0.05,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=4.5,
eta_min=0,
by_epoch=True,
begin=10,
end=100,
convert_to_iter_based=True)
]

optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(
type='AdamW',
lr=2e-06,
betas=(0.9, 0.98),
eps=1e-08,
weight_decay=0.02),
paramwise_cfg=dict(
norm_decay_mult=0., bias_decay_mult=0.,
custom_keys={
'STAN': dict(lr_mult=10.),
}),
clip_grad=dict(max_norm=5, norm_type=2)
)

default_hooks = dict(checkpoint=dict(type='printBest_CheckpointHook', interval=-1, save_best='auto', rule='greater'))

auto_scale_lr = dict(enable=True, base_batch_size=128)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants