-
Notifications
You must be signed in to change notification settings - Fork 9
/
vqaX.py
504 lines (373 loc) · 20 KB
/
vqaX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from transformers import GPT2Tokenizer, AutoConfig
from transformers import AdamW, get_linear_schedule_with_warmup
import json
from cococaption.pycocotools.coco import COCO
from cococaption.pycocoevalcap.eval import COCOEvalCap
from PIL import Image
from accelerate import Accelerator
from models.gpt import GPT2LMHeadModel
from models.clip_vit import ImageEncoder
from utils.data_utils import *
from utils.eval_utils import top_filtering
def change_requires_grad(model, req_grad):
for p in model.parameters():
p.requires_grad = req_grad
def load_checkpoint(ckpt_path, epoch):
model_name = 'nle_model_{}'.format(str(epoch))
tokenizer_name = 'nle_gpt2_tokenizer_0'
filename = 'ckpt_stats_' + str(epoch) + '.tar'
tokenizer = GPT2Tokenizer.from_pretrained(ckpt_path + tokenizer_name) # load tokenizer
model = GPT2LMHeadModel.from_pretrained(ckpt_path + model_name).to(device) # load model with config
opt = torch.load(ckpt_path + filename)
optimizer = get_optimizer(model, learning_rate)
optimizer.load_state_dict(opt['optimizer_state_dict'])
start_epoch = opt['epoch'] + 1
scheduler_dic = opt['scheduler']
del opt
torch.cuda.empty_cache()
return tokenizer, model, optimizer, scheduler_dic, start_epoch
def load_pretrained():
model_path = 'pretrained_model/pretrain_model_14'
tokenizer_path = 'pretrained_model/pretrain_tokenizer_0'
tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path) # load tokenizer
model = GPT2LMHeadModel.from_pretrained(model_path).to(device) # load model with config
return tokenizer, model
def save_checkpoint(epoch, unwrapped_model, optimizer, tokenizer, scheduler, ckpt_path, **kwargs):
model_name = 'nle_model_{}'.format(str(epoch))
tokenizer_name = 'nle_gpt2_tokenizer_{}'.format(str(epoch))
filename = 'ckpt_stats_' + str(epoch) + '.tar'
if epoch == 0:
tokenizer.save_pretrained(ckpt_path + tokenizer_name) # save tokenizer
unwrapped_model.save_pretrained(ckpt_path + model_name, save_function=accelerator.save)
opt = {'epoch': epoch,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
**kwargs}
accelerator.save(opt, ckpt_path + filename)
# def get_scores(annFile, resFile, save_scores_path):
# coco = COCO(annFile)
# cocoRes = coco.loadRes(resFile)
# cocoEval = COCOEvalCap(coco, cocoRes)
# cocoEval.evaluate()
# with open(save_scores_path, 'w') as w:
# json.dump(cocoEval.eval, w)
def filter_and_get_scores(resFileExp, save_scores_pathExp, full_predictions, exp_predictions):
all_file = json.load(open(nle_data_test_path, 'r'))
gt_answers = {}
for key,value in all_file.items():
gt_answers[int(key)] = data_utils.proc_ans(value['answers'])
pred_answers = {}
for item in full_predictions:
pred_answers[item['image_id']] = item['caption'].split("because")[0].strip()
correct_keys = []
for key,value in pred_answers.items():
gt_answer = gt_answers[key]
# to measure accuracy for VQA, please change "==" to "in" (if value in gt_answer:)
# you need to also change the proc_ans funtion in utils/data_uitls.py to return: list(ans_prob_dict.keys())
if value == gt_answer:
correct_keys.append(key)
exp_preds = [item for item in exp_predictions if item['image_id'] in correct_keys]
with open(resFileExp, 'w') as w:
json.dump(exp_preds, w)
coco = COCO(annFileExp)
cocoRes = coco.loadRes(resFileExp)
cocoEval = COCOEvalCap(coco, cocoRes)
cocoEval.params['image_id'] = cocoRes.getImgIds()
cocoEval.evaluate()
with open(save_scores_pathExp, 'w') as w:
json.dump(cocoEval.eval, w)
class VQAXTrainDataset(Dataset):
def __init__(self, path, transform, tokenizer, max_seq_len):
self.tokenizer = tokenizer
self.transform = transform
self.max_seq_len = max_seq_len # question + <bos> The answer is <answer> becase <explanation> <eos>
self.data = json.load(open(path, 'r'))
self.ids_list = list(self.data.keys())
for k,v in self.data.items():
if len(v['explanation']) > 1: # some questions have more than one explanation
# duplicate them for loading. -1 because one explanation is already in ids_list
self.ids_list += [str(k)] * (len(v['explanation']) - 1)
self.index_tracker = {k: len(v['explanation']) - 1 for k,v in self.data.items()}
def __getitem__(self, i):
quention_id = self.ids_list[i]
sample = self.data[quention_id]
img_name = sample['image_name']
text_a = data_utils.proc_ques(sample['question']) # question
answer = data_utils.proc_ans(sample['answers'])
exp_idx = self.index_tracker[quention_id] # the index of the explanation for questions with multiple explanations
if exp_idx > 0:
self.index_tracker[quention_id] -= 1 # decrease usage
text_b = sample['explanation'][exp_idx] # explanation
# tokenization process
q_segment_id, a_segment_id, e_segment_id = self.tokenizer.convert_tokens_to_ids(['<question>',
'<answer>',
'<explanation>'])
tokens = self.tokenizer.tokenize(text_a)
labels = [-100] * len(tokens) # we dont want to predict the question, set to pad to ignore in XE
segment_ids = [q_segment_id] * len(tokens)
answer = [self.tokenizer.bos_token] + self.tokenizer.tokenize(" the answer is " + answer)
answer_len = len(answer)
tokens_b = self.tokenizer.tokenize(" because " + text_b) + [self.tokenizer.eos_token]
exp_len = len(tokens_b)
tokens += answer + tokens_b
labels += [-100] + answer[1:] + tokens_b # labels will be shifted in the model, so for now set them same as tokens
segment_ids += [a_segment_id] * answer_len
segment_ids += [e_segment_id] * exp_len
if len(tokens) > self.max_seq_len :
tokens = tokens[:self.max_seq_len]
labels = labels[:self.max_seq_len]
segment_ids = segment_ids[:self.max_seq_len]
assert len(tokens) == len(segment_ids)
assert len(tokens) == len(labels)
seq_len = len(tokens)
padding_len = self.max_seq_len - seq_len
tokens = tokens + ([self.tokenizer.pad_token] * padding_len)
labels = labels + ([-100] * padding_len)
segment_ids += ([e_segment_id] * padding_len)
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.tensor(input_ids, dtype=torch.long)
labels = [self.tokenizer.convert_tokens_to_ids(t) if t!=-100 else t for t in labels]
labels = torch.tensor(labels, dtype=torch.long)
segment_ids = torch.tensor(segment_ids, dtype=torch.long)
folder = 'images/train2014/' if 'train' in img_name else 'images/val2014/'
img_path = folder + img_name
img = Image.open(img_path).convert('RGB')
img = self.transform(img)
qid = torch.LongTensor([int(quention_id)])
return (img, qid, input_ids, labels, segment_ids)
def __len__(self):
return len(self.ids_list)
class VQAXEvalDataset(Dataset):
def __init__(self, path, transform, tokenizer, max_seq_len):
self.tokenizer = tokenizer
self.transform = transform
self.max_seq_len = max_seq_len # question + <bos> The answer is <answer> becase <explanation> <eos>
self.data = json.load(open(path, 'r'))
self.ids_list = list(self.data.keys())
def __getitem__(self, i):
quention_id = self.ids_list[i]
sample = self.data[quention_id]
img_name = sample['image_name']
text_a = data_utils.proc_ques(sample['question']) # question
# tokenization process
q_segment_id, a_segment_id, e_segment_id = self.tokenizer.convert_tokens_to_ids(['<question>', '<answer>', '<explanation>'])
tokens = self.tokenizer.tokenize(text_a)
segment_ids = [q_segment_id] * len(tokens)
answer = [self.tokenizer.bos_token] + self.tokenizer.tokenize(" the answer is")
answer_len = len(answer)
tokens += answer
segment_ids += [a_segment_id] * answer_len
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.tensor(input_ids, dtype=torch.long)
segment_ids = torch.tensor(segment_ids, dtype=torch.long)
folder = 'images/train2014/' if 'train' in img_name else 'images/val2014/' # test and val are both in val2014
img_path = folder + img_name
img = Image.open(img_path).convert('RGB')
img = self.transform(img)
qid = torch.LongTensor([int(quention_id)])
return (img, qid, input_ids, segment_ids)
def __len__(self):
return len(self.ids_list)
def sample_sequences(model, tokenizer, loader):
model.eval()
results_exp = []
results_full = []
SPECIAL_TOKENS = ['<|endoftext|>', '<pad>', '<question>', '<answer>', '<explanation>']
special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS)
because_token = tokenizer.convert_tokens_to_ids('Ġbecause')
max_len = 20
for i,batch in enumerate(loader):
current_output = []
batch = tuple(input_tensor.to(device) for input_tensor in batch)
img, img_id, input_ids, segment_ids = batch
img_embeddings = image_encoder(img)
always_exp = False
with torch.no_grad():
for step in range(max_len + 1):
if step == max_len:
break
outputs = model(input_ids=input_ids,
past_key_values=None,
attention_mask=None,
token_type_ids=segment_ids,
position_ids=None,
encoder_hidden_states=img_embeddings,
encoder_attention_mask=None,
labels=None,
use_cache=False,
return_dict=True)
lm_logits = outputs.logits
logits = lm_logits[0, -1, :] / temperature
logits = top_filtering(logits, top_k=top_k, top_p=top_p)
probs = F.softmax(logits, dim=-1)
prev = torch.topk(probs, 1)[1] if no_sample else torch.multinomial(probs, 1)
if prev.item() in special_tokens_ids:
break
# take care of when to start the <explanation> token
if not always_exp:
if prev.item() != because_token:
new_segment = special_tokens_ids[-2] # answer segment
else:
new_segment = special_tokens_ids[-1] # explanation segment
always_exp = True
else:
new_segment = special_tokens_ids[-1] # explanation segment
new_segment = torch.LongTensor([new_segment]).to(device)
current_output.append(prev.item())
input_ids = torch.cat((input_ids, prev.unsqueeze(0)), dim = 1)
segment_ids = torch.cat((segment_ids, new_segment.unsqueeze(0)), dim = 1)
decoded_sequences = tokenizer.decode(current_output, skip_special_tokens=True).lstrip()
results_full.append({"image_id": img_id.item(), "caption": decoded_sequences})
if 'because' in decoded_sequences:
cut_decoded_sequences = decoded_sequences.split('because')[-1].strip()
else:
cut_decoded_sequences = " ".join(decoded_sequences.split()[2:])
results_exp.append({"image_id": img_id.item(), "caption": cut_decoded_sequences})
print("\rEvaluation: Finished {}/{}".format(i, len(loader)), end=' ')
return results_full, results_exp
def get_optimizer(model, learning_rate):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}]
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate)
return optimizer
accelerator = Accelerator()
device = accelerator.device
finetune_pretrained = False # if True, finetunes from the image captioning model
eval_batch_size = 1
img_size = 224
ckpt_path = 'ckpts/'
caption_save_path = 'cococaption/results/'
annFileExp = 'cococaption/annotations/vqaX_test_annot_exp.json'
annFileFull = 'cococaption/annotations/vqaX_test_annot_full.json'
nle_data_train_path = 'nle_data/VQA-X/vqaX_train.json'
nle_data_test_path = 'nle_data/VQA-X/vqaX_test.json'
nle_data_val_path = 'nle_data/VQA-X/vqaX_val.json'
max_seq_len = 40
load_from_epoch = None
no_sample = True
top_k = 0
top_p = 0.9
batch_size = 32 # per GPU
num_train_epochs = 30
weight_decay = 0
learning_rate = 2e-5 if not finetune_pretrained else 1e-5
gradient_accumulation_steps = 1
start_epoch = 0
temperature = 1
image_encoder = ImageEncoder(device).to(device)
change_requires_grad(image_encoder, False)
if load_from_epoch is not None:
tokenizer, model, optimizer, scheduler_dic, start_epoch = load_checkpoint(ckpt_path, load_from_epoch)
else:
if finetune_pretrained:
tokenizer, model = load_pretrained()
optimizer = get_optimizer(model, learning_rate)
else:
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
orig_num_tokens = len(tokenizer.encoder)
num_new_tokens = tokenizer.add_special_tokens({'pad_token': '<pad>',
'additional_special_tokens': ['<question>', '<answer>', '<explanation>']})
assert len(tokenizer) == orig_num_tokens + num_new_tokens
config = AutoConfig.from_pretrained('distilgpt2')
# Add configs
setattr(config, 'img_size', None)
setattr(config, 'max_seq_len', None)
config.img_size = img_size
config.max_seq_len = max_seq_len
config.add_cross_attention = True
model = GPT2LMHeadModel.from_pretrained('distilgpt2', config = config)
model.resize_token_embeddings(len(tokenizer))
model = model.to(device)
optimizer = get_optimizer(model, learning_rate)
print("Model Setup Ready...")
img_transform = transforms.Compose([transforms.Resize((img_size,img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
train_dataset = VQAXTrainDataset(path = nle_data_train_path,
transform = img_transform,
tokenizer = tokenizer,
max_seq_len = max_seq_len)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size = batch_size,
shuffle=True,
pin_memory=True)
# val_dataset = VQAXEvalDataset(path = nle_data_val_path,
# transform = img_transform,
# tokenizer = tokenizer,
# max_seq_len = max_seq_len)
# val_loader = torch.utils.data.DataLoader(val_dataset,
# batch_size = 1,
# shuffle=False,
# pin_memory=True)
test_dataset = VQAXEvalDataset(path = nle_data_test_path,
transform = img_transform,
tokenizer = tokenizer,
max_seq_len = max_seq_len)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size = 1,
shuffle=False,
pin_memory=True)
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
t_total = (len(train_loader) // gradient_accumulation_steps) * num_train_epochs
warmup_steps = 0 # 0.10 * t_total
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
if load_from_epoch is not None:
scheduler.load_state_dict(scheduler_dic)
for epoch in range(start_epoch, num_train_epochs):
model.train()
accum_loss = 0
for step, batch in enumerate(train_loader):
batch = tuple(input_tensor.to(device) for input_tensor in batch)
img, _, input_ids, labels, segment_ids = batch
img_embeddings = image_encoder(img)
outputs = model(input_ids=input_ids,
past_key_values=None,
attention_mask=None,
token_type_ids=segment_ids,
position_ids=None,
encoder_hidden_states=img_embeddings,
encoder_attention_mask=None,
labels=labels,
use_cache=False,
return_dict=True)
loss = outputs.loss
loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
accum_loss += loss.item()
if step % gradient_accumulation_steps == 0 or step == len(train_loader) - 1:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
accelerator.print("\rEpoch {} / {}, Iter {} / {}, Loss: {:.3f}".format(epoch,
num_train_epochs,
step, len(train_loader),
accum_loss),
end=' ')
accum_loss = 0
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
save_checkpoint(epoch, unwrapped_model, optimizer, tokenizer, scheduler, ckpt_path)
if accelerator.is_main_process:
results_full, results_exp = sample_sequences(unwrapped_model, tokenizer, test_loader)
resFileExp = caption_save_path + 'captions_exp_' + str(epoch) + '.json'
unf_resFileExp = caption_save_path + 'unf_captions_exp_' + str(epoch) + '.json'
unf_resFileFull = caption_save_path + 'unf_captions_full_' + str(epoch) + '.json'
save_scores_pathExp = caption_save_path + 'scores_exp_' + str(epoch) + '.json'
with open(unf_resFileExp, 'w') as w:
json.dump(results_exp, w)
with open(unf_resFileFull, 'w') as w:
json.dump(results_full, w)
# unfiltered results
# get_scores(annFileExp, unf_resFileExp, save_scores_pathExp)
# filtered results
filter_and_get_scores(resFileExp, save_scores_pathExp, results_full, results_exp)