forked from journeymidnight/yig-front-caddy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crypto.go
324 lines (294 loc) · 9.85 KB
/
crypto.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
package caddytls
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/tls"
"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
"errors"
"fmt"
"hash/fnv"
"io"
"io/ioutil"
"log"
"math/big"
"net"
"os"
"path/filepath"
"time"
"golang.org/x/crypto/ocsp"
"github.com/mholt/caddy"
"github.com/xenolf/lego/acme"
)
// loadPrivateKey loads a PEM-encoded ECC/RSA private key from an array of bytes.
func loadPrivateKey(keyBytes []byte) (crypto.PrivateKey, error) {
keyBlock, _ := pem.Decode(keyBytes)
switch keyBlock.Type {
case "RSA PRIVATE KEY":
return x509.ParsePKCS1PrivateKey(keyBlock.Bytes)
case "EC PRIVATE KEY":
return x509.ParseECPrivateKey(keyBlock.Bytes)
}
return nil, errors.New("unknown private key type")
}
// savePrivateKey saves a PEM-encoded ECC/RSA private key to an array of bytes.
func savePrivateKey(key crypto.PrivateKey) ([]byte, error) {
var pemType string
var keyBytes []byte
switch key := key.(type) {
case *ecdsa.PrivateKey:
var err error
pemType = "EC"
keyBytes, err = x509.MarshalECPrivateKey(key)
if err != nil {
return nil, err
}
case *rsa.PrivateKey:
pemType = "RSA"
keyBytes = x509.MarshalPKCS1PrivateKey(key)
}
pemKey := pem.Block{Type: pemType + " PRIVATE KEY", Bytes: keyBytes}
return pem.EncodeToMemory(&pemKey), nil
}
// stapleOCSP staples OCSP information to cert for hostname name.
// If you have it handy, you should pass in the PEM-encoded certificate
// bundle; otherwise the DER-encoded cert will have to be PEM-encoded.
// If you don't have the PEM blocks already, just pass in nil.
//
// Errors here are not necessarily fatal, it could just be that the
// certificate doesn't have an issuer URL.
func stapleOCSP(cert *Certificate, pemBundle []byte) error {
if pemBundle == nil {
// The function in the acme package that gets OCSP requires a PEM-encoded cert
bundle := new(bytes.Buffer)
for _, derBytes := range cert.Certificate.Certificate {
pem.Encode(bundle, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
}
pemBundle = bundle.Bytes()
}
var ocspBytes []byte
var ocspResp *ocsp.Response
var ocspErr error
var gotNewOCSP bool
// First try to load OCSP staple from storage and see if
// we can still use it.
// TODO: Use Storage interface instead of disk directly
var ocspFileNamePrefix string
if len(cert.Names) > 0 {
ocspFileNamePrefix = cert.Names[0] + "-"
}
ocspFileName := ocspFileNamePrefix + fastHash(pemBundle)
ocspCachePath := filepath.Join(ocspFolder, ocspFileName)
cachedOCSP, err := ioutil.ReadFile(ocspCachePath)
if err == nil {
resp, err := ocsp.ParseResponse(cachedOCSP, nil)
if err == nil {
if freshOCSP(resp) {
// staple is still fresh; use it
ocspBytes = cachedOCSP
ocspResp = resp
}
} else {
// invalid contents; delete the file
// (we do this independently of the maintenance routine because
// in this case we know for sure this should be a staple file
// because we loaded it by name, whereas the maintenance routine
// just iterates the list of files, even if somehow a non-staple
// file gets in the folder. in this case we are sure it is corrupt.)
err := os.Remove(ocspCachePath)
if err != nil {
log.Printf("[WARNING] Unable to delete invalid OCSP staple file: %v", err)
}
}
}
// If we couldn't get a fresh staple by reading the cache,
// then we need to request it from the OCSP responder
if ocspResp == nil || len(ocspBytes) == 0 {
ocspBytes, ocspResp, ocspErr = acme.GetOCSPForCert(pemBundle)
if ocspErr != nil {
// An error here is not a problem because a certificate may simply
// not contain a link to an OCSP server. But we should log it anyway.
// There's nothing else we can do to get OCSP for this certificate,
// so we can return here with the error.
return fmt.Errorf("no OCSP stapling for %v: %v", cert.Names, ocspErr)
}
gotNewOCSP = true
}
// By now, we should have a response. If good, staple it to
// the certificate. If the OCSP response was not loaded from
// storage, we persist it for next time.
if ocspResp.Status == ocsp.Good {
cert.Certificate.OCSPStaple = ocspBytes
cert.OCSP = ocspResp
if gotNewOCSP {
err := os.MkdirAll(filepath.Join(caddy.AssetsPath(), "ocsp"), 0700)
if err != nil {
return fmt.Errorf("unable to make OCSP staple path for %v: %v", cert.Names, err)
}
err = ioutil.WriteFile(ocspCachePath, ocspBytes, 0644)
if err != nil {
return fmt.Errorf("unable to write OCSP staple file for %v: %v", cert.Names, err)
}
}
}
return nil
}
// makeSelfSignedCert makes a self-signed certificate according
// to the parameters in config. It then caches the certificate
// in our cache.
func makeSelfSignedCert(config *Config) error {
// start by generating private key
var privKey interface{}
var err error
switch config.KeyType {
case "", acme.EC256:
privKey, err = ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
case acme.EC384:
privKey, err = ecdsa.GenerateKey(elliptic.P384(), rand.Reader)
case acme.RSA2048:
privKey, err = rsa.GenerateKey(rand.Reader, 2048)
case acme.RSA4096:
privKey, err = rsa.GenerateKey(rand.Reader, 4096)
case acme.RSA8192:
privKey, err = rsa.GenerateKey(rand.Reader, 8192)
default:
return fmt.Errorf("cannot generate private key; unknown key type %v", config.KeyType)
}
if err != nil {
return fmt.Errorf("failed to generate private key: %v", err)
}
// create certificate structure with proper values
notBefore := time.Now()
notAfter := notBefore.Add(24 * time.Hour * 7)
serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
serialNumber, err := rand.Int(rand.Reader, serialNumberLimit)
if err != nil {
return fmt.Errorf("failed to generate serial number: %v", err)
}
cert := &x509.Certificate{
SerialNumber: serialNumber,
Subject: pkix.Name{Organization: []string{"Caddy Self-Signed"}},
NotBefore: notBefore,
NotAfter: notAfter,
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth},
}
if ip := net.ParseIP(config.Hostname); ip != nil {
cert.IPAddresses = append(cert.IPAddresses, ip)
} else {
cert.DNSNames = append(cert.DNSNames, config.Hostname)
}
publicKey := func(privKey interface{}) interface{} {
switch k := privKey.(type) {
case *rsa.PrivateKey:
return &k.PublicKey
case *ecdsa.PrivateKey:
return &k.PublicKey
default:
return errors.New("unknown key type")
}
}
derBytes, err := x509.CreateCertificate(rand.Reader, cert, cert, publicKey(privKey), privKey)
if err != nil {
return fmt.Errorf("could not create certificate: %v", err)
}
cacheCertificate(Certificate{
Certificate: tls.Certificate{
Certificate: [][]byte{derBytes},
PrivateKey: privKey,
Leaf: cert,
},
Names: cert.DNSNames,
NotAfter: cert.NotAfter,
Config: config,
})
return nil
}
// RotateSessionTicketKeys rotates the TLS session ticket keys
// on cfg every TicketRotateInterval. It spawns a new goroutine so
// this function does NOT block. It returns a channel you should
// close when you are ready to stop the key rotation, like when the
// server using cfg is no longer running.
func RotateSessionTicketKeys(cfg *tls.Config) chan struct{} {
ch := make(chan struct{})
ticker := time.NewTicker(TicketRotateInterval)
go runTLSTicketKeyRotation(cfg, ticker, ch)
return ch
}
// Functions that may be swapped out for testing
var (
runTLSTicketKeyRotation = standaloneTLSTicketKeyRotation
setSessionTicketKeysTestHook = func(keys [][32]byte) [][32]byte { return keys }
)
// standaloneTLSTicketKeyRotation governs over the array of TLS ticket keys used to de/crypt TLS tickets.
// It periodically sets a new ticket key as the first one, used to encrypt (and decrypt),
// pushing any old ticket keys to the back, where they are considered for decryption only.
//
// Lack of entropy for the very first ticket key results in the feature being disabled (as does Go),
// later lack of entropy temporarily disables ticket key rotation.
// Old ticket keys are still phased out, though.
//
// Stops the ticker when returning.
func standaloneTLSTicketKeyRotation(c *tls.Config, ticker *time.Ticker, exitChan chan struct{}) {
defer ticker.Stop()
// The entire page should be marked as sticky, but Go cannot do that
// without resorting to syscall#Mlock. And, we don't have madvise (for NODUMP), too. ☹
keys := make([][32]byte, 1, NumTickets)
rng := c.Rand
if rng == nil {
rng = rand.Reader
}
if _, err := io.ReadFull(rng, keys[0][:]); err != nil {
c.SessionTicketsDisabled = true // bail if we don't have the entropy for the first one
return
}
c.SessionTicketKey = keys[0] // SetSessionTicketKeys doesn't set a 'tls.keysAlreadySet'
c.SetSessionTicketKeys(setSessionTicketKeysTestHook(keys))
for {
select {
case _, isOpen := <-exitChan:
if !isOpen {
return
}
case <-ticker.C:
rng = c.Rand // could've changed since the start
if rng == nil {
rng = rand.Reader
}
var newTicketKey [32]byte
_, err := io.ReadFull(rng, newTicketKey[:])
if len(keys) < NumTickets {
keys = append(keys, keys[0]) // manipulates the internal length
}
for idx := len(keys) - 1; idx >= 1; idx-- {
keys[idx] = keys[idx-1] // yes, this makes copies
}
if err == nil {
keys[0] = newTicketKey
}
// pushes the last key out, doesn't matter that we don't have a new one
c.SetSessionTicketKeys(setSessionTicketKeysTestHook(keys))
}
}
}
// fastHash hashes input using a hashing algorithm that
// is fast, and returns the hash as a hex-encoded string.
// Do not use this for cryptographic purposes.
func fastHash(input []byte) string {
h := fnv.New32a()
h.Write([]byte(input))
return fmt.Sprintf("%x", h.Sum32())
}
const (
// NumTickets is how many tickets to hold and consider
// to decrypt TLS sessions.
NumTickets = 4
// TicketRotateInterval is how often to generate
// new ticket for TLS PFS encryption
TicketRotateInterval = 10 * time.Hour
)