-
Notifications
You must be signed in to change notification settings - Fork 3
/
data_preprocess.py
423 lines (381 loc) · 18.1 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
"""
Functions for data pre-process
"""
import cv2
import numpy as np
import pandas as pd
import math
from collections import defaultdict
from PIL import Image
import _pickle as cPickle
import os
import face_alignment
from xml.dom.minidom import parse
import pyedflib
import shutil
# Stimulation time (second) of trials elicited by different videos in MAHNOB-HCI datasets; keys are the names of stimulation videos, values are the lengths of videos.
# Note, videos in MAHNOB-HCI dataset include extra time for participant self-assessment, so we only extract frames during the stimulation.
trial_time = {'69.avi': 58,
'55.avi': 76,
'58.avi': 58,
'earworm_f.avi': 53,
'53.avi': 104,
'80.avi': 96,
'52.avi': 96,
'79.avi': 42,
'73.avi': 71,
'90.avi': 85,
'107.avi': 34,
'146.avi': 87,
'30.avi': 70,
'138.avi': 116,
'newyork_f.avi': 89,
'111.avi': 113,
'detroit_f.avi': 89,
'cats_f.avi': 98,
'dallas_f.avi': 89,
'funny_f.avi': 87
}
def MAHNOB_summary():
'''
This function extracts information (trialID, subjectID, stimulation time, valence, arousal) from each trials in MAHNOB-HCI dataset.
Note, when preprocessing MAHNOB-HCI dataset, this function should be called before video2frames().
'''
root = './datasets/MAHNOB/Sessions/'
data = []
for trial in os.listdir(root):
if not trial[0] == '.':
file = root + trial + '/session.xml'
try:
xml = parse(file)
r = xml.documentElement
arousal = r.getAttribute('feltArsl')
valence = r.getAttribute('feltVlnc')
media = r.getAttribute('mediaFile')
sub = r.getElementsByTagName('subject')[0].getAttribute('id')
data.append([int(trial), int(sub), int(trial_time[media]), int(valence), int(arousal)])
except:
print(f'Information of trial {trial} is incomplete.')
arr = np.array(data)
np.save('./data/MAHNOB/labels/mahnob_labels.npy', arr)
# ************************* Face Data Pre-process *************************
def video2frames(dataset='DEAP'):
'''
Extract frames from videos.
:param dataset: used dataset
'''
assert dataset in ['DEAP', 'MAHNOB'], 'Invalid dataset name'
if dataset == 'DEAP':
dataset_path = './datasets/DEAP/face_video/'
des_path = './datasets/DEAP/frames/'
for subject in os.listdir(dataset_path):
if subject.startswith('.'):
continue
sub_path = dataset_path+subject
for video_file in os.listdir(sub_path):
if not os.path.exists(des_path + subject):
os.mkdir(des_path + subject)
if not os.path.exists(des_path + subject + '/' + video_file.split('.')[0]):
os.mkdir(des_path + subject + '/' + video_file.split('.')[0])
video_file_path = sub_path+'/'+video_file
video = cv2.VideoCapture(video_file_path)
c = 1
frame_rate = 10
count = 0
while (True):
ret, frame = video.read()
if ret:
if (c % frame_rate == 0):
count += 1
cv2.imwrite(des_path+subject+'/'+video_file.split('.')[0] +'/'+ video_file.split('.')[0]+'_'+str(count) + '.png', frame)
c += 1
cv2.waitKey(0)
else:
break
video.release()
if dataset == 'MAHNOB':
dataset_path = './datasets/MAHNOB/Sessions/'
des_path = './datasets/MAHNOB/frames/'
labels = np.load('./data/MAHNOB/labels/mahnob_labels.npy')
for l in labels:
trial = l[0]
subject = l[1]
time = l[2]
for video_file in os.listdir(dataset_path+str(trial)):
if video_file.endswith('.avi'):
video_file_path = dataset_path + str(trial) +'/' + video_file
video = cv2.VideoCapture(video_file_path)
if not os.path.exists(des_path + str(subject)):
os.mkdir(des_path + str(subject))
if not os.path.exists(des_path + str(subject) +'/' + str(trial)):
os.mkdir(des_path + str(subject) + '/' + str(trial))
c = 1
frame_rate = 12
count = 0
while (True):
if count > time * 5:
break
ret, frame = video.read()
if ret:
if (c % frame_rate == 0):
count += 1
cv2.imwrite(
des_path + str(subject) + '/' + str(trial) + '/' + str(trial) + '_'+ str(
count) + '.png', frame)
c += 1
cv2.waitKey(0)
else:
break
video.release()
# functions for face alignment and cropping are based on https://github.com/DANNALI35/zhihu_article/tree/master/201901_face_alignment
def to_dict(landmarks):
'''
Transfer detected facial landmarks list to dictionary.
:param landmarks: a list of facial landmarks
:return: a dictionary of facial landmarks
'''
l = list()
for i in range(68):
point = (landmarks[i][0], landmarks[i][1])
l.append(point)
face_landmarks_dict = dict()
face_landmarks_dict['chin'] = l[0:17]
face_landmarks_dict['left_eyebrow'] = l[17:22]
face_landmarks_dict['right_eyebrow'] = l[22:27]
face_landmarks_dict['nose_bridge'] = l[27:31]
face_landmarks_dict['nose_tip'] = l[31:36]
face_landmarks_dict['left_eye'] = l[36:42]
face_landmarks_dict['right_eye'] = l[42:48]
face_landmarks_dict['top_lip'] = l[48:55] + l[60:65]
face_landmarks_dict['bottom_lip'] = l[55:60] + l[65:68]
return face_landmarks_dict
def crop_face(image_array, landmarks):
""" crop face according to eye,mouth and chin position
:param image_array: numpy array of a single image
:param landmarks: dict of landmarks for facial parts as keys and tuple of coordinates as values
:return:
cropped_img: numpy array of cropped image
"""
eye_landmark = np.concatenate([np.array(landmarks['left_eye']),
np.array(landmarks['right_eye'])])
eye_center = np.mean(eye_landmark, axis=0).astype("int")
lip_landmark = np.concatenate([np.array(landmarks['top_lip']),
np.array(landmarks['bottom_lip'])])
lip_center = np.mean(lip_landmark, axis=0).astype("int")
mid_part = lip_center[1] - eye_center[1]
top = eye_center[1] - mid_part * 18 / 40
bottom = lip_center[1] + mid_part * 12 / 40
w = h = bottom - top
x_center = eye_center[0]
left, right = (x_center - w / 2, x_center + w / 2)
pil_img = Image.fromarray(image_array)
left, top, right, bottom = [int(i) for i in [left, top, right, bottom]]
cropped_img = pil_img.crop((left, top, right, bottom))
cropped_img = np.array(cropped_img)
return cropped_img, left, top
def rotate_landmarks(landmarks, eye_center, angle, row):
""" rotate landmarks to fit the aligned face
:param landmarks: dict of landmarks for facial parts as keys and tuple of coordinates as values
:param eye_center: tuple of coordinates for eye center
:param angle: degrees of rotation
:param row: row size of the image
:return: rotated_landmarks with the same structure with landmarks, but different values
"""
rotated_landmarks = defaultdict(list)
for facial_feature in landmarks.keys():
for landmark in landmarks[facial_feature]:
rotated_landmark = rotate(origin=eye_center, point=landmark, angle=angle, row=row)
rotated_landmarks[facial_feature].append(rotated_landmark)
return rotated_landmarks
def rotate(origin, point, angle, row):
""" rotate coordinates in image coordinate system
:param origin: tuple of coordinates,the rotation center
:param point: tuple of coordinates, points to rotate
:param angle: degrees of rotation
:param row: row size of the image
:return: rotated coordinates of point
"""
x1, y1 = point
x2, y2 = origin
y1 = row - y1
y2 = row - y2
angle = math.radians(angle)
x = x2 + math.cos(angle) * (x1 - x2) - math.sin(angle) * (y1 - y2)
y = y2 + math.sin(angle) * (x1 - x2) + math.cos(angle) * (y1 - y2)
y = row - y
return int(x), int(y)
def align_face(image_array, landmarks):
""" align faces according to eyes position
:param image_array: numpy array of a single image
:param landmarks: dict of landmarks for facial parts as keys and tuple of coordinates as values
:return:
rotated_img: numpy array of aligned image
eye_center: tuple of coordinates for eye center
angle: degrees of rotation
"""
# get list landmarks of left and right eye
left_eye = landmarks['left_eye']
right_eye = landmarks['right_eye']
# calculate the mean point of landmarks of left and right eye
left_eye_center = np.mean(left_eye, axis=0).astype("int")
right_eye_center = np.mean(right_eye, axis=0).astype("int")
# compute the angle between the eye centroids
dy = right_eye_center[1] - left_eye_center[1]
dx = right_eye_center[0] - left_eye_center[0]
# compute angle between the line of 2 centeroids and the horizontal line
angle = math.atan2(dy, dx) * 180. / math.pi
# calculate the center of 2 eyes
eye_center = ((left_eye_center[0] + right_eye_center[0]) // 2,
(left_eye_center[1] + right_eye_center[1]) // 2)
# at the eye_center, rotate the image by the angle
rotate_matrix = cv2.getRotationMatrix2D(eye_center, angle, scale=1)
rotated_img = cv2.warpAffine(image_array, rotate_matrix, (image_array.shape[1], image_array.shape[0]))
return rotated_img, eye_center, angle
def align_landmarks(landmarks):
left_eye = landmarks['left_eye']
right_eye = landmarks['right_eye']
# calculate the mean point of landmarks of left and right eye
left_eye_center = np.mean(left_eye, axis=0).astype("int")
right_eye_center = np.mean(right_eye, axis=0).astype("int")
# compute the angle between the eye centroids
dy = right_eye_center[1] - left_eye_center[1]
dx = right_eye_center[0] - left_eye_center[0]
# compute angle between the line of 2 centeroids and the horizontal line
angle = math.atan2(dy, dx) * 180. / math.pi
# calculate the center of 2 eyes
eye_center = ((left_eye_center[0] + right_eye_center[0]) // 2,
(left_eye_center[1] + right_eye_center[1]) // 2)
# rotated_landmarks = defaultdict(list)
rotated_landmarks = []
for facial_feature in landmarks.keys():
for landmark in landmarks[facial_feature]:
rotated_landmark = rotate(origin=eye_center, point=landmark, angle=angle, row=570)
# rotated_landmarks[facial_feature].append(rotated_landmark)
rotated_landmarks.append(rotated_landmark)
return rotated_landmarks
def face_detection_alignment_cropping(dataset='DEAP'):
'''
Transfer frames to faces by face detection, alignment and cropping.
:param dataset: used dataset
'''
assert dataset in ['DEAP', 'MAHNOB'], 'Invalid dataset name'
# facial landmarks detector; use gpu by changing device parameter to 'cuda'
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False, device='cpu')
if dataset == 'DEAP':
root = './datasets/DEAP/frames/'
des_path = './data/DEAP/faces/'
if dataset == 'MAHNOB':
root = './datasets/MAHNOB/frames/'
des_path = './data/DEAP/faces/'
for subject in os.listdir(root):
for trial in os.listdir(root+subject):
if os.path.exists(des_path + subject + '/' + trial):
continue
os.mkdir(des_path + subject + '/' + trial)
for frame in os.listdir(root+subject+'/'+trial):
frame_path = root + subject + '/' + trial + '/' + frame
img = cv2.imread(frame_path)
preds = fa.get_landmarks(img)
try:
landmarks_list = preds[0]
landmarks_dict = to_dict(landmarks_list)
aligned_face, eye_center, angle = align_face(image_array=img, landmarks=landmarks_dict)
rotated_landmarks = rotate_landmarks(landmarks=landmarks_dict, eye_center=eye_center, angle=angle,
row=img.shape[0])
cropped_img, left, top = crop_face(image_array=aligned_face, landmarks=rotated_landmarks)
cv2.imwrite(des_path + subject + '/' + trial + '/' + frame, cropped_img)
except:
print(f'Fail to get the face image: {frame}')
# ************************* Bio-sensing Data Pre-process *************************
def trial2segments(dataset='DEAP'):
'''
Divide bio-sensing data of each trial to 1-second length segments, and perform baseline removal.
Note, when dealing with MAHNOB-HCI dataset, EEG data should be common reference averaged, bandpass filtered and artefact removed using EEGLab,
and preprocessed EEG data files (one file per trial) should be stored in './datasets/MAHNOB/eeg_preprocessed/ folder in .npy format.
:param dataset: used dataset
'''
assert dataset in ['DEAP', 'MAHNOB'], 'Invalid dataset name'
if dataset == 'DEAP':
root = './datasets/DEAP/data_preprocessed_python/'
des_path = './data/DEAP/bio/'
labels = pd.read_csv('./data/DEAP/labels/participant_ratings.csv')
for file in os.listdir(root):
subject = file.split('.')[0]
sub_id = int(subject[1:])
os.mkdir(des_path + 's' + str(sub_id))
f = open(root + file, 'rb')
d = cPickle.load(f, encoding='latin1')
data = d['data']
for experiment in range(40):
trial = labels[(labels['Participant_id'] == sub_id) & (labels['Experiment_id'] == experiment + 1)][
'Trial'].iloc[0]
# baseline
l = []
for i in range(3):
l.append(data[experiment][:, i * 128:(i + 1) * 128])
baseline_mean = sum(l) / 3
# segments
for i in range(60):
data_seg = data[experiment][:, 384 + i * 128:384 + (i + 1) * 128]
data_seg_removed = data_seg - baseline_mean
np.save(f'{des_path}s{sub_id}/{sub_id}_{trial}_{i + 1}.npy', data_seg_removed)
if dataset == 'MAHNOB':
root = './datasets/MAHNOB/Sessions/'
eeg_root = './datasets/MAHNOB/eeg_preprocessed/'
des_path = '/data/MAHNOB/bio/'
indeces = [32, 33, 34, 40, 44, 45] # used bio-sensing data channel indeces
labels = np.load('./data/MAHNOB/labels/mahnob_labels.npy')
for i in range(len(labels)):
trial = labels[i][0]
subject = labels[i][1]
time = labels[i][2]
for file in os.listdir(f'{root}{trial}'):
if file.endswith('.bdf'):
with pyedflib.EdfReader(f'{root}{trial}/file') as f:
channels = []
for index in indeces:
channel = np.zeros(f.samples_in_file(index), dtype='float64')
f.readsignal(index, 0, f.samples_in_file(index), channel)
channel = channel[27 * 256:(30 + time) * 256:2].reshape(1, -1)
channels.append(channel)
peri = np.concatenate(channels, 0)
eeg = np.load(f'{eeg_root}{trial}.npy').T[:, 27 * 128:(30 + time) * 128]
bio = np.concatenate([eeg, peri], 0)
baseline1 = bio[:, :128]
baseline2 = bio[:, 128:256]
baseline3 = bio[:, 256:384]
baseline_mean = (baseline1 + baseline2 + baseline3) / 3
for segment in range(time):
data = bio[:, (3 + segment) * 128:(4 + segment) * 128]
data = data - baseline_mean
if not os.path.exists(f'{des_path}{subject}/'):
os.mkdir(f'{des_path}{subject}/')
np.save(f'{des_path}{subject}/{subject}_{trial}_{segment + 1}.npy', data)
def preprocess_demo():
'''
This function pre-processes DEAP dataset.
Please unzip face_video.zip, data_preprocessed_python.zip and metadata_csv.zip from DEAP dataset in './datasets/DEAP/'.
Then call this function, the preprocessed data will be stored in './data/DEAP/'.
It is recommended to use a device with GPU, otherwise the face detection will be slow.
Note that faces cannot be detected from some frames, these frames should be replaced with the neighbour frame manually.
'''
# pre-process face data
if not os.path.exists('./datasets/DEAP/frames/'):
os.mkdir('./datasets/DEAP/frames/')
if not os.path.exists('./data/'):
os.mkdir('./data/')
if not os.path.exists('./data/DEAP/'):
os.mkdir('./data/DEAP/')
if not os.path.exists('./data/DEAP/faces/'):
os.mkdir('./data/DEAP/faces/')
if not os.path.exists('./data/DEAP/labels/'):
os.mkdir('./data/DEAP/labels/')
shutil.copy('./datasets/DEAP/metadata_csv/participant_ratings.csv', './data/DEAP/labels/participant_ratings.csv')
video2frames('DEAP')
face_detection_alignment_cropping('DEAP')
# preprocess bio-sensing data
if not os.path.exists('./data/DEAP/bio/'):
os.mkdir('./data/DEAP/bio/')
trial2segments('DEAP')
if __name__ == '__main__':
preprocess_demo()