dynaSpark (Extended Spark) is a research project started at Politecnico di Milano in 2016. It aims to add functionalities for managing the quality of service (QoS) of Spark applications.
With dynaSpark users can control Spark applications' duration by specifying a deadline. dynaSpark will dynamically allocate resources (cores) to meet the desired duration.
dynaSpark is based on a novel container- and stage-based architecture where executors are containerized using docker containers and dedicated to a single stage. Moreover dynaSpark uses a centralized heuristic that computes local deadline for each stage and distributed control theoretical planners for allocating in a fine-grained fashion cpu-time to each executor.
In the experiments dynaSpark was able to meet deadlines with an error equals to less than 1%.
Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.
You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.
Spark is built using Apache Maven. To build Spark and its example programs, run:
build/mvn -DskipTests clean package
(You do not need to do this if you downloaded a pre-built package.)
You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.
The easiest way to start using Spark is through the Scala shell:
./bin/spark-shell
Try the following command, which should return 1000:
scala> sc.parallelize(1 to 1000).count()
Alternatively, if you prefer Python, you can use the Python shell:
./bin/pyspark
And run the following command, which should also return 1000:
>>> sc.parallelize(range(1000)).count()
Spark also comes with several sample programs in the examples
directory.
To run one of them, use ./bin/run-example <class> [params]
. For example:
./bin/run-example SparkPi
will run the Pi example locally.
You can set the MASTER environment variable when running examples to submit
examples to a cluster. This can be a mesos:// or spark:// URL,
"yarn" to run on YARN, and "local" to run
locally with one thread, or "local[N]" to run locally with N threads. You
can also use an abbreviated class name if the class is in the examples
package. For instance:
MASTER=spark://host:7077 ./bin/run-example SparkPi
Many of the example programs print usage help if no params are given.
Testing first requires building Spark. Once Spark is built, tests can be run using:
./dev/run-tests
Please see the guidance on how to run tests for a module, or individual tests.
Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.
Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.
Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.