-
Notifications
You must be signed in to change notification settings - Fork 0
/
plist.go
369 lines (339 loc) · 10.3 KB
/
plist.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package obj
import (
"fmt"
"strings"
"github.com/go-asm/go/cmd/objabi"
)
type Plist struct {
Firstpc *Prog
Curfn interface{} // holds a *gc.Node, if non-nil
}
// ProgAlloc is a function that allocates Progs.
// It is used to provide access to cached/bulk-allocated Progs to the assemblers.
type ProgAlloc func() *Prog
func Flushplist(ctxt *Link, plist *Plist, newprog ProgAlloc, myimportpath string) {
// Build list of symbols, and assign instructions to lists.
var curtext *LSym
var etext *Prog
var text []*LSym
var plink *Prog
for p := plist.Firstpc; p != nil; p = plink {
if ctxt.Debugasm > 0 && ctxt.Debugvlog {
fmt.Printf("obj: %v\n", p)
}
plink = p.Link
p.Link = nil
switch p.As {
case AEND:
continue
case ATEXT:
s := p.From.Sym
if s == nil {
// func _() { }
curtext = nil
continue
}
text = append(text, s)
etext = p
curtext = s
continue
case AFUNCDATA:
// Rewrite reference to go_args_stackmap(SB) to the Go-provided declaration information.
if curtext == nil { // func _() {}
continue
}
switch p.To.Sym.Name {
case "go_args_stackmap":
if p.From.Type != TYPE_CONST || p.From.Offset != objabi.FUNCDATA_ArgsPointerMaps {
ctxt.Diag("FUNCDATA use of go_args_stackmap(SB) without FUNCDATA_ArgsPointerMaps")
}
p.To.Sym = ctxt.LookupDerived(curtext, curtext.Name+".args_stackmap")
case "no_pointers_stackmap":
if p.From.Type != TYPE_CONST || p.From.Offset != objabi.FUNCDATA_LocalsPointerMaps {
ctxt.Diag("FUNCDATA use of no_pointers_stackmap(SB) without FUNCDATA_LocalsPointerMaps")
}
// funcdata for functions with no local variables in frame.
// Define two zero-length bitmaps, because the same index is used
// for the local variables as for the argument frame, and assembly
// frames have two argument bitmaps, one without results and one with results.
// Write []uint32{2, 0}.
b := make([]byte, 8)
ctxt.Arch.ByteOrder.PutUint32(b, 2)
s := ctxt.GCLocalsSym(b)
if !s.OnList() {
ctxt.Globl(s, int64(len(s.P)), int(RODATA|DUPOK))
}
p.To.Sym = s
}
}
if curtext == nil {
etext = nil
continue
}
etext.Link = p
etext = p
}
if newprog == nil {
newprog = ctxt.NewProg
}
// Add reference to Go arguments for assembly functions without them.
if ctxt.IsAsm {
for _, s := range text {
if !strings.HasPrefix(s.Name, "\"\".") {
continue
}
// The current args_stackmap generation in the compiler assumes
// that the function in question is ABI0, so avoid introducing
// an args_stackmap reference if the func is not ABI0 (better to
// have no stackmap than an incorrect/lying stackmap).
if s.ABI() != ABI0 {
continue
}
foundArgMap, foundArgInfo := false, false
for p := s.Func().Text; p != nil; p = p.Link {
if p.As == AFUNCDATA && p.From.Type == TYPE_CONST {
if p.From.Offset == objabi.FUNCDATA_ArgsPointerMaps {
foundArgMap = true
}
if p.From.Offset == objabi.FUNCDATA_ArgInfo {
foundArgInfo = true
}
if foundArgMap && foundArgInfo {
break
}
}
}
if !foundArgMap {
p := Appendp(s.Func().Text, newprog)
p.As = AFUNCDATA
p.From.Type = TYPE_CONST
p.From.Offset = objabi.FUNCDATA_ArgsPointerMaps
p.To.Type = TYPE_MEM
p.To.Name = NAME_EXTERN
p.To.Sym = ctxt.LookupDerived(s, s.Name+".args_stackmap")
}
if !foundArgInfo {
p := Appendp(s.Func().Text, newprog)
p.As = AFUNCDATA
p.From.Type = TYPE_CONST
p.From.Offset = objabi.FUNCDATA_ArgInfo
p.To.Type = TYPE_MEM
p.To.Name = NAME_EXTERN
p.To.Sym = ctxt.LookupDerived(s, fmt.Sprintf("%s.arginfo%d", s.Name, s.ABI()))
}
}
}
// Turn functions into machine code images.
for _, s := range text {
mkfwd(s)
if ctxt.Arch.ErrorCheck != nil {
ctxt.Arch.ErrorCheck(ctxt, s)
}
linkpatch(ctxt, s, newprog)
ctxt.Arch.Preprocess(ctxt, s, newprog)
ctxt.Arch.Assemble(ctxt, s, newprog)
if ctxt.Errors > 0 {
continue
}
linkpcln(ctxt, s)
if myimportpath != "" {
ctxt.populateDWARF(plist.Curfn, s, myimportpath)
}
}
}
func (ctxt *Link) InitTextSym(s *LSym, flag int) {
if s == nil {
// func _() { }
return
}
if s.Func() != nil {
ctxt.Diag("InitTextSym double init for %s", s.Name)
}
s.NewFuncInfo()
if s.OnList() {
ctxt.Diag("symbol %s listed multiple times", s.Name)
}
// TODO(mdempsky): Remove once cmd/asm stops writing "" symbols.
name := strings.Replace(s.Name, "\"\"", ctxt.Pkgpath, -1)
s.Func().FuncID = objabi.GetFuncID(name, flag&WRAPPER != 0 || flag&ABIWRAPPER != 0)
s.Func().FuncFlag = ctxt.toFuncFlag(flag)
s.Set(AttrOnList, true)
s.Set(AttrDuplicateOK, flag&DUPOK != 0)
s.Set(AttrNoSplit, flag&NOSPLIT != 0)
s.Set(AttrReflectMethod, flag&REFLECTMETHOD != 0)
s.Set(AttrWrapper, flag&WRAPPER != 0)
s.Set(AttrABIWrapper, flag&ABIWRAPPER != 0)
s.Set(AttrNeedCtxt, flag&NEEDCTXT != 0)
s.Set(AttrNoFrame, flag&NOFRAME != 0)
s.Type = objabi.STEXT
ctxt.Text = append(ctxt.Text, s)
// Set up DWARF entries for s
ctxt.dwarfSym(s)
}
func (ctxt *Link) toFuncFlag(flag int) objabi.FuncFlag {
var out objabi.FuncFlag
if flag&TOPFRAME != 0 {
out |= objabi.FuncFlag_TOPFRAME
}
if ctxt.IsAsm {
out |= objabi.FuncFlag_ASM
}
return out
}
func (ctxt *Link) Globl(s *LSym, size int64, flag int) {
if s.OnList() {
ctxt.Diag("symbol %s listed multiple times", s.Name)
}
s.Set(AttrOnList, true)
ctxt.Data = append(ctxt.Data, s)
s.Size = size
if s.Type == 0 {
s.Type = objabi.SBSS
}
if flag&DUPOK != 0 {
s.Set(AttrDuplicateOK, true)
}
if flag&RODATA != 0 {
s.Type = objabi.SRODATA
} else if flag&NOPTR != 0 {
if s.Type == objabi.SDATA {
s.Type = objabi.SNOPTRDATA
} else {
s.Type = objabi.SNOPTRBSS
}
} else if flag&TLSBSS != 0 {
s.Type = objabi.STLSBSS
}
}
// EmitEntryLiveness generates PCDATA Progs after p to switch to the
// liveness map active at the entry of function s. It returns the last
// Prog generated.
func (ctxt *Link) EmitEntryLiveness(s *LSym, p *Prog, newprog ProgAlloc) *Prog {
pcdata := ctxt.EmitEntryStackMap(s, p, newprog)
pcdata = ctxt.EmitEntryUnsafePoint(s, pcdata, newprog)
return pcdata
}
// Similar to EmitEntryLiveness, but just emit stack map.
func (ctxt *Link) EmitEntryStackMap(s *LSym, p *Prog, newprog ProgAlloc) *Prog {
pcdata := Appendp(p, newprog)
pcdata.Pos = s.Func().Text.Pos
pcdata.As = APCDATA
pcdata.From.Type = TYPE_CONST
pcdata.From.Offset = objabi.PCDATA_StackMapIndex
pcdata.To.Type = TYPE_CONST
pcdata.To.Offset = -1 // pcdata starts at -1 at function entry
return pcdata
}
// Similar to EmitEntryLiveness, but just emit unsafe point map.
func (ctxt *Link) EmitEntryUnsafePoint(s *LSym, p *Prog, newprog ProgAlloc) *Prog {
pcdata := Appendp(p, newprog)
pcdata.Pos = s.Func().Text.Pos
pcdata.As = APCDATA
pcdata.From.Type = TYPE_CONST
pcdata.From.Offset = objabi.PCDATA_UnsafePoint
pcdata.To.Type = TYPE_CONST
pcdata.To.Offset = -1
return pcdata
}
// StartUnsafePoint generates PCDATA Progs after p to mark the
// beginning of an unsafe point. The unsafe point starts immediately
// after p.
// It returns the last Prog generated.
func (ctxt *Link) StartUnsafePoint(p *Prog, newprog ProgAlloc) *Prog {
pcdata := Appendp(p, newprog)
pcdata.As = APCDATA
pcdata.From.Type = TYPE_CONST
pcdata.From.Offset = objabi.PCDATA_UnsafePoint
pcdata.To.Type = TYPE_CONST
pcdata.To.Offset = objabi.PCDATA_UnsafePointUnsafe
return pcdata
}
// EndUnsafePoint generates PCDATA Progs after p to mark the end of an
// unsafe point, restoring the register map index to oldval.
// The unsafe point ends right after p.
// It returns the last Prog generated.
func (ctxt *Link) EndUnsafePoint(p *Prog, newprog ProgAlloc, oldval int64) *Prog {
pcdata := Appendp(p, newprog)
pcdata.As = APCDATA
pcdata.From.Type = TYPE_CONST
pcdata.From.Offset = objabi.PCDATA_UnsafePoint
pcdata.To.Type = TYPE_CONST
pcdata.To.Offset = oldval
return pcdata
}
// MarkUnsafePoints inserts PCDATAs to mark nonpreemptible and restartable
// instruction sequences, based on isUnsafePoint and isRestartable predicate.
// p0 is the start of the instruction stream.
// isUnsafePoint(p) returns true if p is not safe for async preemption.
// isRestartable(p) returns true if we can restart at the start of p (this Prog)
// upon async preemption. (Currently multi-Prog restartable sequence is not
// supported.)
// isRestartable can be nil. In this case it is treated as always returning false.
// If isUnsafePoint(p) and isRestartable(p) are both true, it is treated as
// an unsafe point.
func MarkUnsafePoints(ctxt *Link, p0 *Prog, newprog ProgAlloc, isUnsafePoint, isRestartable func(*Prog) bool) {
if isRestartable == nil {
// Default implementation: nothing is restartable.
isRestartable = func(*Prog) bool { return false }
}
prev := p0
prevPcdata := int64(-1) // entry PC data value
prevRestart := int64(0)
for p := prev.Link; p != nil; p, prev = p.Link, p {
if p.As == APCDATA && p.From.Offset == objabi.PCDATA_UnsafePoint {
prevPcdata = p.To.Offset
continue
}
if prevPcdata == objabi.PCDATA_UnsafePointUnsafe {
continue // already unsafe
}
if isUnsafePoint(p) {
q := ctxt.StartUnsafePoint(prev, newprog)
q.Pc = p.Pc
q.Link = p
// Advance to the end of unsafe point.
for p.Link != nil && isUnsafePoint(p.Link) {
p = p.Link
}
if p.Link == nil {
break // Reached the end, don't bother marking the end
}
p = ctxt.EndUnsafePoint(p, newprog, prevPcdata)
p.Pc = p.Link.Pc
continue
}
if isRestartable(p) {
val := int64(objabi.PCDATA_Restart1)
if val == prevRestart {
val = objabi.PCDATA_Restart2
}
prevRestart = val
q := Appendp(prev, newprog)
q.As = APCDATA
q.From.Type = TYPE_CONST
q.From.Offset = objabi.PCDATA_UnsafePoint
q.To.Type = TYPE_CONST
q.To.Offset = val
q.Pc = p.Pc
q.Link = p
if p.Link == nil {
break // Reached the end, don't bother marking the end
}
if isRestartable(p.Link) {
// Next Prog is also restartable. No need to mark the end
// of this sequence. We'll just go ahead mark the next one.
continue
}
p = Appendp(p, newprog)
p.As = APCDATA
p.From.Type = TYPE_CONST
p.From.Offset = objabi.PCDATA_UnsafePoint
p.To.Type = TYPE_CONST
p.To.Offset = prevPcdata
p.Pc = p.Link.Pc
}
}
}