-
Notifications
You must be signed in to change notification settings - Fork 0
/
pgen.go
365 lines (323 loc) · 10.6 KB
/
pgen.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssagen
import (
"fmt"
"os"
"sort"
"sync"
"github.com/go-asm/go/buildcfg"
"github.com/go-asm/go/cmd/compile/base"
"github.com/go-asm/go/cmd/compile/ir"
"github.com/go-asm/go/cmd/compile/objw"
"github.com/go-asm/go/cmd/compile/ssa"
"github.com/go-asm/go/cmd/compile/types"
"github.com/go-asm/go/cmd/obj"
"github.com/go-asm/go/cmd/objabi"
"github.com/go-asm/go/cmd/src"
)
// cmpstackvarlt reports whether the stack variable a sorts before b.
func cmpstackvarlt(a, b *ir.Name) bool {
// Sort non-autos before autos.
if needAlloc(a) != needAlloc(b) {
return needAlloc(b)
}
// If both are non-auto (e.g., parameters, results), then sort by
// frame offset (defined by ABI).
if !needAlloc(a) {
return a.FrameOffset() < b.FrameOffset()
}
// From here on, a and b are both autos (i.e., local variables).
// Sort used before unused (so AllocFrame can truncate unused
// variables).
if a.Used() != b.Used() {
return a.Used()
}
// Sort pointer-typed before non-pointer types.
// Keeps the stack's GC bitmap compact.
ap := a.Type().HasPointers()
bp := b.Type().HasPointers()
if ap != bp {
return ap
}
// Group variables that need zeroing, so we can efficiently zero
// them altogether.
ap = a.Needzero()
bp = b.Needzero()
if ap != bp {
return ap
}
// Sort variables in descending alignment order, so we can optimally
// pack variables into the frame.
if a.Type().Alignment() != b.Type().Alignment() {
return a.Type().Alignment() > b.Type().Alignment()
}
// Sort normal variables before open-coded-defer slots, so that the
// latter are grouped together and near the top of the frame (to
// minimize varint encoding of their varp offset).
if a.OpenDeferSlot() != b.OpenDeferSlot() {
return a.OpenDeferSlot()
}
// If a and b are both open-coded defer slots, then order them by
// index in descending order, so they'll be laid out in the frame in
// ascending order.
//
// Their index was saved in FrameOffset in state.openDeferSave.
if a.OpenDeferSlot() {
return a.FrameOffset() > b.FrameOffset()
}
// Tie breaker for stable results.
return a.Sym().Name < b.Sym().Name
}
// byStackVar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*ir.Name
func (s byStackVar) Len() int { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// needAlloc reports whether n is within the current frame, for which we need to
// allocate space. In particular, it excludes arguments and results, which are in
// the callers frame.
func needAlloc(n *ir.Name) bool {
if n.Op() != ir.ONAME {
base.FatalfAt(n.Pos(), "%v has unexpected Op %v", n, n.Op())
}
switch n.Class {
case ir.PAUTO:
return true
case ir.PPARAM:
return false
case ir.PPARAMOUT:
return n.IsOutputParamInRegisters()
default:
base.FatalfAt(n.Pos(), "%v has unexpected Class %v", n, n.Class)
return false
}
}
func (s *ssafn) AllocFrame(f *ssa.Func) {
s.stksize = 0
s.stkptrsize = 0
s.stkalign = int64(types.RegSize)
fn := s.curfn
// Mark the PAUTO's unused.
for _, ln := range fn.Dcl {
if ln.OpenDeferSlot() {
// Open-coded defer slots have indices that were assigned
// upfront during SSA construction, but the defer statement can
// later get removed during deadcode elimination (#61895). To
// keep their relative offsets correct, treat them all as used.
continue
}
if needAlloc(ln) {
ln.SetUsed(false)
}
}
for _, l := range f.RegAlloc {
if ls, ok := l.(ssa.LocalSlot); ok {
ls.N.SetUsed(true)
}
}
for _, b := range f.Blocks {
for _, v := range b.Values {
if n, ok := v.Aux.(*ir.Name); ok {
switch n.Class {
case ir.PPARAMOUT:
if n.IsOutputParamInRegisters() && v.Op == ssa.OpVarDef {
// ignore VarDef, look for "real" uses.
// TODO: maybe do this for PAUTO as well?
continue
}
fallthrough
case ir.PPARAM, ir.PAUTO:
n.SetUsed(true)
}
}
}
}
// Use sort.Stable instead of sort.Sort so stack layout (and thus
// compiler output) is less sensitive to frontend changes that
// introduce or remove unused variables.
sort.Stable(byStackVar(fn.Dcl))
// Reassign stack offsets of the locals that are used.
lastHasPtr := false
for i, n := range fn.Dcl {
if n.Op() != ir.ONAME || n.Class != ir.PAUTO && !(n.Class == ir.PPARAMOUT && n.IsOutputParamInRegisters()) {
// i.e., stack assign if AUTO, or if PARAMOUT in registers (which has no predefined spill locations)
continue
}
if !n.Used() {
fn.DebugInfo.(*ssa.FuncDebug).OptDcl = fn.Dcl[i:]
fn.Dcl = fn.Dcl[:i]
break
}
types.CalcSize(n.Type())
w := n.Type().Size()
if w >= types.MaxWidth || w < 0 {
base.Fatalf("bad width")
}
if w == 0 && lastHasPtr {
// Pad between a pointer-containing object and a zero-sized object.
// This prevents a pointer to the zero-sized object from being interpreted
// as a pointer to the pointer-containing object (and causing it
// to be scanned when it shouldn't be). See issue 24993.
w = 1
}
s.stksize += w
s.stksize = types.RoundUp(s.stksize, n.Type().Alignment())
if n.Type().Alignment() > int64(types.RegSize) {
s.stkalign = n.Type().Alignment()
}
if n.Type().HasPointers() {
s.stkptrsize = s.stksize
lastHasPtr = true
} else {
lastHasPtr = false
}
n.SetFrameOffset(-s.stksize)
}
s.stksize = types.RoundUp(s.stksize, s.stkalign)
s.stkptrsize = types.RoundUp(s.stkptrsize, s.stkalign)
}
const maxStackSize = 1 << 30
// Compile builds an SSA backend function,
// uses it to generate a plist,
// and flushes that plist to machine code.
// worker indicates which of the backend workers is doing the processing.
func Compile(fn *ir.Func, worker int) {
f := buildssa(fn, worker)
// Note: check arg size to fix issue 25507.
if f.Frontend().(*ssafn).stksize >= maxStackSize || f.OwnAux.ArgWidth() >= maxStackSize {
largeStackFramesMu.Lock()
largeStackFrames = append(largeStackFrames, largeStack{locals: f.Frontend().(*ssafn).stksize, args: f.OwnAux.ArgWidth(), pos: fn.Pos()})
largeStackFramesMu.Unlock()
return
}
pp := objw.NewProgs(fn, worker)
defer pp.Free()
genssa(f, pp)
// Check frame size again.
// The check above included only the space needed for local variables.
// After genssa, the space needed includes local variables and the callee arg region.
// We must do this check prior to calling pp.Flush.
// If there are any oversized stack frames,
// the assembler may emit inscrutable complaints about invalid instructions.
if pp.Text.To.Offset >= maxStackSize {
largeStackFramesMu.Lock()
locals := f.Frontend().(*ssafn).stksize
largeStackFrames = append(largeStackFrames, largeStack{locals: locals, args: f.OwnAux.ArgWidth(), callee: pp.Text.To.Offset - locals, pos: fn.Pos()})
largeStackFramesMu.Unlock()
return
}
pp.Flush() // assemble, fill in boilerplate, etc.
// If we're compiling the package init function, search for any
// relocations that target global map init outline functions and
// turn them into weak relocs.
if fn.IsPackageInit() && base.Debug.WrapGlobalMapCtl != 1 {
weakenGlobalMapInitRelocs(fn)
}
// fieldtrack must be called after pp.Flush. See issue 20014.
fieldtrack(pp.Text.From.Sym, fn.FieldTrack)
}
// globalMapInitLsyms records the LSym of each map.init.NNN outlined
// map initializer function created by the compiler.
var globalMapInitLsyms map[*obj.LSym]struct{}
// RegisterMapInitLsym records "s" in the set of outlined map initializer
// functions.
func RegisterMapInitLsym(s *obj.LSym) {
if globalMapInitLsyms == nil {
globalMapInitLsyms = make(map[*obj.LSym]struct{})
}
globalMapInitLsyms[s] = struct{}{}
}
// weakenGlobalMapInitRelocs walks through all of the relocations on a
// given a package init function "fn" and looks for relocs that target
// outlined global map initializer functions; if it finds any such
// relocs, it flags them as R_WEAK.
func weakenGlobalMapInitRelocs(fn *ir.Func) {
if globalMapInitLsyms == nil {
return
}
for i := range fn.LSym.R {
tgt := fn.LSym.R[i].Sym
if tgt == nil {
continue
}
if _, ok := globalMapInitLsyms[tgt]; !ok {
continue
}
if base.Debug.WrapGlobalMapDbg > 1 {
fmt.Fprintf(os.Stderr, "=-= weakify fn %v reloc %d %+v\n", fn, i,
fn.LSym.R[i])
}
// set the R_WEAK bit, leave rest of reloc type intact
fn.LSym.R[i].Type |= objabi.R_WEAK
}
}
// StackOffset returns the stack location of a LocalSlot relative to the
// stack pointer, suitable for use in a DWARF location entry. This has nothing
// to do with its offset in the user variable.
func StackOffset(slot ssa.LocalSlot) int32 {
n := slot.N
var off int64
switch n.Class {
case ir.PPARAM, ir.PPARAMOUT:
if !n.IsOutputParamInRegisters() {
off = n.FrameOffset() + base.Ctxt.Arch.FixedFrameSize
break
}
fallthrough // PPARAMOUT in registers allocates like an AUTO
case ir.PAUTO:
off = n.FrameOffset()
if base.Ctxt.Arch.FixedFrameSize == 0 {
off -= int64(types.PtrSize)
}
if buildcfg.FramePointerEnabled {
off -= int64(types.PtrSize)
}
}
return int32(off + slot.Off)
}
// fieldtrack adds R_USEFIELD relocations to fnsym to record any
// struct fields that it used.
func fieldtrack(fnsym *obj.LSym, tracked map[*obj.LSym]struct{}) {
if fnsym == nil {
return
}
if !buildcfg.Experiment.FieldTrack || len(tracked) == 0 {
return
}
trackSyms := make([]*obj.LSym, 0, len(tracked))
for sym := range tracked {
trackSyms = append(trackSyms, sym)
}
sort.Slice(trackSyms, func(i, j int) bool { return trackSyms[i].Name < trackSyms[j].Name })
for _, sym := range trackSyms {
r := obj.Addrel(fnsym)
r.Sym = sym
r.Type = objabi.R_USEFIELD
}
}
// largeStack is info about a function whose stack frame is too large (rare).
type largeStack struct {
locals int64
args int64
callee int64
pos src.XPos
}
var (
largeStackFramesMu sync.Mutex // protects largeStackFrames
largeStackFrames []largeStack
)
func CheckLargeStacks() {
// Check whether any of the functions we have compiled have gigantic stack frames.
sort.Slice(largeStackFrames, func(i, j int) bool {
return largeStackFrames[i].pos.Before(largeStackFrames[j].pos)
})
for _, large := range largeStackFrames {
if large.callee != 0 {
base.ErrorfAt(large.pos, 0, "stack frame too large (>1GB): %d MB locals + %d MB args + %d MB callee", large.locals>>20, large.args>>20, large.callee>>20)
} else {
base.ErrorfAt(large.pos, 0, "stack frame too large (>1GB): %d MB locals + %d MB args", large.locals>>20, large.args>>20)
}
}
}