-
Notifications
You must be signed in to change notification settings - Fork 623
/
doc.go
360 lines (359 loc) · 16.7 KB
/
doc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Copyright (c) 2012-2015 The gocql Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package gocql implements a fast and robust Cassandra driver for the
// Go programming language.
//
// # Connecting to the cluster
//
// Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration:
//
// cluster := gocql.NewCluster("192.168.1.1", "192.168.1.2", "192.168.1.3")
//
// Port can be specified as part of the address, the above is equivalent to:
//
// cluster := gocql.NewCluster("192.168.1.1:9042", "192.168.1.2:9042", "192.168.1.3:9042")
//
// It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address,
// an IP address not a domain name. This is because events from Cassandra will use the configured IP
// address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address
// then the driver may connect multiple times to the same host, and will not mark the node being down or up from events.
//
// Then you can customize more options (see ClusterConfig):
//
// cluster.Keyspace = "example"
// cluster.Consistency = gocql.Quorum
// cluster.ProtoVersion = 4
//
// The driver tries to automatically detect the protocol version to use if not set, but you might want to set the
// protocol version explicitly, as it's not defined which version will be used in certain situations (for example
// during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes).
//
// The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version.
// If you use replace directive in go.mod, the driver will send information about the replacement module instead.
//
// When ready, create a session from the configuration. Don't forget to Close the session once you are done with it:
//
// session, err := cluster.CreateSession()
// if err != nil {
// return err
// }
// defer session.Close()
//
// # Authentication
//
// CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and
// client response pairs. The details of the exchanged messages depend on the authenticator used.
//
// To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider.
//
// PasswordAuthenticator is provided to use for username/password authentication:
//
// cluster := gocql.NewCluster("192.168.1.1", "192.168.1.2", "192.168.1.3")
// cluster.Authenticator = gocql.PasswordAuthenticator{
// Username: "user",
// Password: "password"
// }
// session, err := cluster.CreateSession()
// if err != nil {
// return err
// }
// defer session.Close()
//
// # Transport layer security
//
// It is possible to secure traffic between the client and server with TLS.
//
// To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly.
// There are also helpers to load keys/certificates from files.
//
// Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification
// to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config.
// SslOptions and Config.InsecureSkipVerify interact as follows:
//
// Config.InsecureSkipVerify | EnableHostVerification | Result
// Config is nil | false | do not verify host
// Config is nil | true | verify host
// false | false | verify host
// true | false | do not verify host
// false | true | verify host
// true | true | verify host
//
// For example:
//
// cluster := gocql.NewCluster("192.168.1.1", "192.168.1.2", "192.168.1.3")
// cluster.SslOpts = &gocql.SslOptions{
// EnableHostVerification: true,
// }
// session, err := cluster.CreateSession()
// if err != nil {
// return err
// }
// defer session.Close()
//
// # Data-center awareness and query routing
//
// To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you
// want to primarily connect is called dc1 (as configured in the database):
//
// cluster := gocql.NewCluster("192.168.1.1", "192.168.1.2", "192.168.1.3")
// cluster.PoolConfig.HostSelectionPolicy = gocql.DCAwareRoundRobinPolicy("dc1")
//
// The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC).
//
// cluster := gocql.NewCluster("192.168.1.1", "192.168.1.2", "192.168.1.3")
// cluster.PoolConfig.HostSelectionPolicy = gocql.TokenAwareHostPolicy(gocql.DCAwareRoundRobinPolicy("dc1"))
//
// Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback.
//
// We recommend running with a token aware host policy in production for maximum performance.
//
// The driver can only use token-aware routing for queries where all partition key columns are query parameters.
// For example, instead of
//
// session.Query("select value from mytable where pk1 = 'abc' AND pk2 = ?", "def")
//
// use
//
// session.Query("select value from mytable where pk1 = ? AND pk2 = ?", "abc", "def")
//
// # Rack-level awareness
//
// The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack.
//
// Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three
// (the local rack, the rest of the local datacenter, and everything else).
//
// RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy.
//
// # Executing queries
//
// Create queries with Session.Query. Query values must not be reused between different executions and must not be
// modified after starting execution of the query.
//
// To execute a query without reading results, use Query.Exec:
//
// err := session.Query(`INSERT INTO tweet (timeline, id, text) VALUES (?, ?, ?)`,
// "me", gocql.TimeUUID(), "hello world").WithContext(ctx).Exec()
//
// Single row can be read by calling Query.Scan:
//
// err := session.Query(`SELECT id, text FROM tweet WHERE timeline = ? LIMIT 1`,
// "me").WithContext(ctx).Consistency(gocql.One).Scan(&id, &text)
//
// Multiple rows can be read using Iter.Scanner:
//
// scanner := session.Query(`SELECT id, text FROM tweet WHERE timeline = ?`,
// "me").WithContext(ctx).Iter().Scanner()
// for scanner.Next() {
// var (
// id gocql.UUID
// text string
// )
// err = scanner.Scan(&id, &text)
// if err != nil {
// log.Fatal(err)
// }
// fmt.Println("Tweet:", id, text)
// }
// // scanner.Err() closes the iterator, so scanner nor iter should be used afterwards.
// if err := scanner.Err(); err != nil {
// log.Fatal(err)
// }
//
// See Example for complete example.
//
// # Prepared statements
//
// The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache
// of prepared statements.
// CQL protocol does not support preparing other query types.
//
// When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column.
// This will cause the database to ignore writing the column.
// The main advantage is the ability to keep the same prepared statement even when you don't
// want to update some fields, where before you needed to make another prepared statement.
//
// # Executing multiple queries concurrently
//
// Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them
// from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries
// are executed asynchronously at the protocol level.
//
// results := make(chan error, 2)
// go func() {
// results <- session.Query(`INSERT INTO tweet (timeline, id, text) VALUES (?, ?, ?)`,
// "me", gocql.TimeUUID(), "hello world 1").Exec()
// }()
// go func() {
// results <- session.Query(`INSERT INTO tweet (timeline, id, text) VALUES (?, ?, ?)`,
// "me", gocql.TimeUUID(), "hello world 2").Exec()
// }()
//
// # Nulls
//
// Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text
// column being null and empty string, you can unmarshal into *string variable instead of string.
//
// var text *string
// err := scanner.Scan(&text)
// if err != nil {
// // handle error
// }
// if text != nil {
// // not null
// }
// else {
// // null
// }
//
// See Example_nulls for full example.
//
// # Reusing slices
//
// The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not
// need to be allocated for every processed row. However, you need to be careful when storing the slices to other
// memory structures.
//
// scanner := session.Query(`SELECT myints FROM table WHERE pk = ?`, "key").WithContext(ctx).Iter().Scanner()
// var myInts []int
// for scanner.Next() {
// // This scan reuses backing store of myInts for each row.
// err = scanner.Scan(&myInts)
// if err != nil {
// log.Fatal(err)
// }
// }
//
// When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the
// slice variable within the scanner loop:
//
// scanner := session.Query(`SELECT myints FROM table WHERE pk = ?`, "key").WithContext(ctx).Iter().Scanner()
// for scanner.Next() {
// var myInts []int
// // This scan always gets pointer to fresh myInts slice, so does not reuse memory.
// err = scanner.Scan(&myInts)
// if err != nil {
// log.Fatal(err)
// }
// }
//
// # Paging
//
// The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch,
// Query.PageSize, and Query.Prefetch.
//
// It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch).
// Manual paging is useful if you want to store the page state externally, for example in a URL to allow users
// browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since
// it contains data from primary keys.
//
// Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that
// should not be modified. If you send paging state from different query or protocol version, then the behaviour
// is not defined (you might get unexpected results or an error from the server). For example, do not send paging state
// returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4,
// paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880).
//
// The driver does not check whether the paging state is from the same protocol version/statement.
// You might want to validate yourself as this could be a problem if you store paging state externally.
// For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster.
//
// Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by
// Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned
// by Iter.PageState is zero, there are no more pages available (or an error occurred).
//
// Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low.
// While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors
// explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't
// rely on the page having the exact count of items.
//
// See Example_paging for an example of manual paging.
//
// # Dynamic list of columns
//
// There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied
// by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case.
//
// See Example_dynamicColumns.
//
// # Batches
//
// The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql.
// Use Session.NewBatch to create a new batch and then fill-in details of individual queries.
// Then execute the batch with Session.ExecuteBatch.
//
// Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have
// overhead to ensure this property.
// Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity.
// Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type.
// A counter batch can only contain statements to update counters.
//
// For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should
// involve only a single partition).
// Multi-partition batch needs to be split by the coordinator node and re-sent to
// correct nodes.
// With single-partition batches you can send the batch directly to the node for the partition without incurring the
// additional network hop.
//
// It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec.
// There are differences how those are executed.
// BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement.
// Session.ExecuteBatch prepares individual statements in the batch.
// If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient.
//
// See Example_batch for an example.
//
// # Lightweight transactions
//
// Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an
// INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS.
//
// Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional
// statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and
// Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for
// Session.MapExecuteBatchCAS.
//
// # Retries and speculative execution
//
// Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed
// multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative
// execution.
//
// Idempotent queries are retried in case of errors based on the configured RetryPolicy.
//
// Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can
// cause the driver to retry on a different node if the query is taking longer than a specified delay even before the
// driver receives an error or timeout from the server. When a query is speculatively executed, the original execution
// is still executing. The two parallel executions of the query race to return a result, the first received result will
// be returned.
//
// # User-defined types
//
// UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing
// UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces).
//
// For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field:
//
// type MyUDT struct {
// FieldA int32 `cql:"a"`
// FieldB string `cql:"b"`
// }
//
// See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler.
//
// # Metrics and tracing
//
// It is possible to provide observer implementations that could be used to gather metrics:
//
// - QueryObserver for monitoring individual queries.
// - BatchObserver for monitoring batch queries.
// - ConnectObserver for monitoring new connections from the driver to the database.
// - FrameHeaderObserver for monitoring individual protocol frames.
//
// CQL protocol also supports tracing of queries. When enabled, the database will write information about
// internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive
// the session ID that the database used to store the trace information in system_traces.sessions and
// system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer.
// Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead,
// so this feature should not be used on production systems with very high load unless you know what you are doing.
package gocql // import "github.com/gocql/gocql"