Permalink
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
pycoral/examples/classify_image.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
121 lines (105 sloc)
4.47 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Lint as: python3 | |
# Copyright 2019 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
r"""Example using PyCoral to classify a given image using an Edge TPU. | |
To run this code, you must attach an Edge TPU attached to the host and | |
install the Edge TPU runtime (`libedgetpu.so`) and `tflite_runtime`. For | |
device setup instructions, see coral.ai/docs/setup. | |
Example usage: | |
``` | |
bash examples/install_requirements.sh classify_image.py | |
python3 examples/classify_image.py \ | |
--model test_data/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite \ | |
--labels test_data/inat_bird_labels.txt \ | |
--input test_data/parrot.jpg | |
``` | |
""" | |
import argparse | |
import time | |
import numpy as np | |
from PIL import Image | |
from pycoral.adapters import classify | |
from pycoral.adapters import common | |
from pycoral.utils.dataset import read_label_file | |
from pycoral.utils.edgetpu import make_interpreter | |
def main(): | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument( | |
'-m', '--model', required=True, help='File path of .tflite file.') | |
parser.add_argument( | |
'-i', '--input', required=True, help='Image to be classified.') | |
parser.add_argument( | |
'-l', '--labels', help='File path of labels file.') | |
parser.add_argument( | |
'-k', '--top_k', type=int, default=1, | |
help='Max number of classification results') | |
parser.add_argument( | |
'-t', '--threshold', type=float, default=0.0, | |
help='Classification score threshold') | |
parser.add_argument( | |
'-c', '--count', type=int, default=5, | |
help='Number of times to run inference') | |
parser.add_argument( | |
'-a', '--input_mean', type=float, default=128.0, | |
help='Mean value for input normalization') | |
parser.add_argument( | |
'-s', '--input_std', type=float, default=128.0, | |
help='STD value for input normalization') | |
args = parser.parse_args() | |
labels = read_label_file(args.labels) if args.labels else {} | |
interpreter = make_interpreter(*args.model.split('@')) | |
interpreter.allocate_tensors() | |
# Model must be uint8 quantized | |
if common.input_details(interpreter, 'dtype') != np.uint8: | |
raise ValueError('Only support uint8 input type.') | |
size = common.input_size(interpreter) | |
image = Image.open(args.input).convert('RGB').resize(size, Image.ANTIALIAS) | |
# Image data must go through two transforms before running inference: | |
# 1. normalization: f = (input - mean) / std | |
# 2. quantization: q = f / scale + zero_point | |
# The following code combines the two steps as such: | |
# q = (input - mean) / (std * scale) + zero_point | |
# However, if std * scale equals 1, and mean - zero_point equals 0, the input | |
# does not need any preprocessing (but in practice, even if the results are | |
# very close to 1 and 0, it is probably okay to skip preprocessing for better | |
# efficiency; we use 1e-5 below instead of absolute zero). | |
params = common.input_details(interpreter, 'quantization_parameters') | |
scale = params['scales'] | |
zero_point = params['zero_points'] | |
mean = args.input_mean | |
std = args.input_std | |
if abs(scale * std - 1) < 1e-5 and abs(mean - zero_point) < 1e-5: | |
# Input data does not require preprocessing. | |
common.set_input(interpreter, image) | |
else: | |
# Input data requires preprocessing | |
normalized_input = (np.asarray(image) - mean) / (std * scale) + zero_point | |
np.clip(normalized_input, 0, 255, out=normalized_input) | |
common.set_input(interpreter, normalized_input.astype(np.uint8)) | |
# Run inference | |
print('----INFERENCE TIME----') | |
print('Note: The first inference on Edge TPU is slow because it includes', | |
'loading the model into Edge TPU memory.') | |
for _ in range(args.count): | |
start = time.perf_counter() | |
interpreter.invoke() | |
inference_time = time.perf_counter() - start | |
classes = classify.get_classes(interpreter, args.top_k, args.threshold) | |
print('%.1fms' % (inference_time * 1000)) | |
print('-------RESULTS--------') | |
for c in classes: | |
print('%s: %.5f' % (labels.get(c.id, c.id), c.score)) | |
if __name__ == '__main__': | |
main() |