Permalink
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
pycoral/examples/detect_image.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
108 lines (90 sloc)
3.66 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Lint as: python3 | |
# Copyright 2019 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
r"""Example using PyCoral to detect objects in a given image. | |
To run this code, you must attach an Edge TPU attached to the host and | |
install the Edge TPU runtime (`libedgetpu.so`) and `tflite_runtime`. For | |
device setup instructions, see coral.ai/docs/setup. | |
Example usage: | |
``` | |
bash examples/install_requirements.sh detect_image.py | |
python3 examples/detect_image.py \ | |
--model test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite \ | |
--labels test_data/coco_labels.txt \ | |
--input test_data/grace_hopper.bmp \ | |
--output ${HOME}/grace_hopper_processed.bmp | |
``` | |
""" | |
import argparse | |
import time | |
from PIL import Image | |
from PIL import ImageDraw | |
from pycoral.adapters import common | |
from pycoral.adapters import detect | |
from pycoral.utils.dataset import read_label_file | |
from pycoral.utils.edgetpu import make_interpreter | |
def draw_objects(draw, objs, labels): | |
"""Draws the bounding box and label for each object.""" | |
for obj in objs: | |
bbox = obj.bbox | |
draw.rectangle([(bbox.xmin, bbox.ymin), (bbox.xmax, bbox.ymax)], | |
outline='red') | |
draw.text((bbox.xmin + 10, bbox.ymin + 10), | |
'%s\n%.2f' % (labels.get(obj.id, obj.id), obj.score), | |
fill='red') | |
def main(): | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument('-m', '--model', required=True, | |
help='File path of .tflite file') | |
parser.add_argument('-i', '--input', required=True, | |
help='File path of image to process') | |
parser.add_argument('-l', '--labels', help='File path of labels file') | |
parser.add_argument('-t', '--threshold', type=float, default=0.4, | |
help='Score threshold for detected objects') | |
parser.add_argument('-o', '--output', | |
help='File path for the result image with annotations') | |
parser.add_argument('-c', '--count', type=int, default=5, | |
help='Number of times to run inference') | |
args = parser.parse_args() | |
labels = read_label_file(args.labels) if args.labels else {} | |
interpreter = make_interpreter(args.model) | |
interpreter.allocate_tensors() | |
image = Image.open(args.input) | |
_, scale = common.set_resized_input( | |
interpreter, image.size, lambda size: image.resize(size, Image.ANTIALIAS)) | |
print('----INFERENCE TIME----') | |
print('Note: The first inference is slow because it includes', | |
'loading the model into Edge TPU memory.') | |
for _ in range(args.count): | |
start = time.perf_counter() | |
interpreter.invoke() | |
inference_time = time.perf_counter() - start | |
objs = detect.get_objects(interpreter, args.threshold, scale) | |
print('%.2f ms' % (inference_time * 1000)) | |
print('-------RESULTS--------') | |
if not objs: | |
print('No objects detected') | |
for obj in objs: | |
print(labels.get(obj.id, obj.id)) | |
print(' id: ', obj.id) | |
print(' score: ', obj.score) | |
print(' bbox: ', obj.bbox) | |
if args.output: | |
image = image.convert('RGB') | |
draw_objects(ImageDraw.Draw(image), objs, labels) | |
image.save(args.output) | |
image.show() | |
if __name__ == '__main__': | |
main() |