-
Notifications
You must be signed in to change notification settings - Fork 818
/
BurstBalloons.java
87 lines (83 loc) · 2.83 KB
/
BurstBalloons.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
package dynamic_programming;
/**
* Created by gouthamvidyapradhan on 02/01/2018. Given n balloons, indexed from 0 to n-1. Each
* balloon is painted with a number on it represented by array nums. You are asked to burst all the
* balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here
* left and right are adjacent indices of i. After the burst, the left and right then becomes
* adjacent.
*
* <p>Find the maximum coins you can collect by bursting the balloons wisely.
*
* <p>Note: (1) You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not
* burst them. (2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
*
* <p>Example:
*
* <p>Given [3, 1, 5, 8]
*
* <p>Return 167
*
* <p>nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 =
* 167
*
* <p>Solution: O(N ^ 3) The recursive top-down dp memorization solution is based on the idea where
* each balloon is considered as the last balloon to be burst. For the above example 1,3,1,5,8,1 (1
* included at either end to indicate boundary) each balloon starting from 3 until 8 is chosen each
* time as a the last balloon to be burst using the boundary 1 on either side. So, for the first
* iteration the result is calculated as 3*1(left boundary)*1(right boundary) + dp(1, 3)
* (left-sub-problem having 1 and 3 as the boundary) + dp(3, 1) (right-sub-problem having 3 and 1 as
* the boundary)
*/
public class BurstBalloons {
private int[][] dp;
private int[] N;
/**
* Main method
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int[] A = {3, 1, 5, 8};
System.out.println(new BurstBalloons().maxCoins(A));
}
public int maxCoins(int[] nums) {
N = new int[nums.length + 2];
N[0] = N[N.length - 1] = 1; // boundary
for (int i = 0; i < nums.length; i++) {
N[i + 1] = nums[i];
}
int[][] DP = new int[N.length][N.length];
for (int r = 2; r < N.length; r++) {
for (int i = 0; i < N.length; i++) {
int j = i + r;
if (j < N.length) {
int max = Integer.MIN_VALUE;
for (int t = i + 1; t < j; t++) {
max = Math.max(max, N[t] * N[i] * N[j] + DP[t][j] + DP[i][t]);
}
DP[i][j] = max;
}
}
}
return DP[0][N.length - 1];
/* for (int i = 0; i < nums.length; i++) {
N[i + 1] = nums[i];
}
dp = new int[N.length][N.length];
for (int[] aDp : dp) {
Arrays.fill(aDp, -1);
}*/
// return dp(0, N.length - 1);
}
private int dp(int l, int r) {
if (l + 1 == r) return 0;
if (dp[l][r] != -1) return dp[l][r];
int result = 0;
for (int i = l + 1; i < r; i++) {
result = Math.max(result, N[i] * N[l] * N[r] + dp(l, i) + dp(i, r));
}
dp[l][r] = result;
return dp[l][r];
}
}