-
Notifications
You must be signed in to change notification settings - Fork 818
/
MaximalSquare.java
53 lines (51 loc) · 1.56 KB
/
MaximalSquare.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
package dynamic_programming;
/**
* Created by gouthamvidyapradhan on 28/11/2017. Given a 2D binary matrix filled with 0's and 1's,
* find the largest square containing only 1's and return its area.
*
* <p>For example, given the following matrix:
*
* <p>1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 Return 4.
*
* <p>Solution: O(n * m) time and space complexity. Calculate the max length of a square using DP(i,
* j) = min(DP[i - 1][j], DP[i][j - 1], DP[i - 1][j - 1]) + 1 Return the square of the answer.
*/
public class MaximalSquare {
/**
* Main method
*
* @param args
*/
public static void main(String[] args) {
char[][] A = {
{'1', '0', '1', '0', '0'},
{'1', '0', '1', '1', '1'},
{'1', '1', '1', '1', '1'},
{'1', '0', '0', '1', '0'}
};
System.out.println(new MaximalSquare().maximalSquare(A));
}
public int maximalSquare(char[][] matrix) {
if (matrix.length == 0) return 0;
int[][] dp = new int[matrix.length][matrix[0].length];
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
if (j - 1 >= 0 && i - 1 >= 0) {
if (matrix[i][j] == '1') {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]);
dp[i][j] = Math.min(dp[i][j], dp[i - 1][j - 1]) + 1;
}
} else {
dp[i][j] = matrix[i][j] == '1' ? 1 : 0;
}
}
}
int max = 0;
for (int i = 0; i < dp.length; i++) {
for (int j = 0; j < dp[0].length; j++) {
max = Math.max(max, dp[i][j]);
}
}
return max * max;
}
}