-
Notifications
You must be signed in to change notification settings - Fork 19
VERPAT Modules and Outputs
The VERPAT model is a compilation of several packages, listed below, the inputs of which are described respectively. The inputs are classified into five categories:
- User input files: These are input files (model or scenario specific) that a user is recommended to change.
- User input model parameters: These are input parameters (model or scenario specific), defined in model_parameters.json, that a user is recommended to change.
- Fixed input files: These are input parameters specific to the model that are fixed.
- Fixed input model parameters: These are input parameters specific to the model, defined in model_parameters.json, that are fixed.
- Internal module inputs: These are inputs produced as output by other modules.
MODULE | PACKAGE | RPAT |
---|---|---|
CreateHouseholds | VESimHouseholds | household |
PredictWorkers | VESimHouseholds | household |
PredictIncome | VESimHouseholds | household |
CreateBaseSyntheticFirms | VESyntheticFirms | household |
CreateFutureSyntheticFirms | VESyntheticFirms | household |
CalculateBasePlaceTypes | VELandUse | urban |
CalculateFuturePlaceTypes | VELandUse | urban |
CreateBaseAccessibility | VETransportSupply | accessibility |
CreateFutureAccessibility | VETransportSupply | accessibility |
AssignVehicleFeatures | VEHouseholdVehicles | vehicle |
AssignVehicleFeaturesFuture | VEHouseholdVehicles | vehicle |
CalculateTravelDemand | VEHouseholdTravel | demand |
CalculateTravelDemandFuture | VEHouseholdTravel | demand |
CalculateCongestionBase | VETransportSupplyUse | congestion |
CalculateCongestionFuture | VETransportSupplyUse | congestion |
CalculateInducedDemand | VEHouseholdTravel | induced |
CalculatePolicyVmt | VEHouseholdTravel | policyvmt |
CalculateCongestionPolicy | VETransportSupplyUse | policycongestion |
ReportRPATMetrics | VEReports | metrics |
Top Definitions Inputs/Outputs
This module creates simulated households for a model using inputs of population by age group for each Azone and year.
-
Household population (azone_hh_pop_by_age.csv): This file contains population estimates/forecasts by county and age cohort for each of the base and future years. The file format includes six age categories used by the population synthesis model:
- 0-14
- 15-19
- 20-29
- 30-54
- 55-64
- 65 Plus
Future year data must be developed by the user; in many regions population forecasts are available from regional or state agencies and/or local academic sources. As with the employment data inputs the future data need not be county specific. Rather, regional totals by age group can be entered into the file with a value such as “region” entered in the county field.
Here is a snapshot of the file:
Geo Year Age0to14 Age15to19 Age20to29 Age30to54 Age55to64 Age65Plus Multnomah 2005 129869 41133 99664 277854 71658 72648 Multnomah 2035 169200 48800 144050 327750 116100 162800 -
Household size (azone_hhsize_targets.csv): This file contains the household specific targets. This contain two household specific attributes:
- AveHhSize: Average household size of households (non-group quarters)
- Prop1PerHh: Proportion of households (non-group quarters) having only one person
Here is a snapshot of the file:
Geo Year AveHhSize Prop1PerHh Multnomah 2005 NA NA Multnomah 2035 NA NA -
Group quarter population (azone_gq_pop_by_age.csv): This file contains group quarters population estimates/forecasts by county and age cohort for each of the base and future years. The file format includes six age categories used by the population synthesis model:
- 0-14
- 15-19
- 20-29
- 30-54
- 55-64
- 65 Plus
Here is a snapshot of the file:
Geo Year GrpAge0to14 GrpAge15to19 GrpAge20to29 GrpAge30to54 GrpAge55to64 GrpAge65Plus Multnomah 2005 0 0 0 1 0 0 Multnomah 2035 0 0 0 1 0 0
-
NumHh: Number of households (non-group quarters)
-
HhId: Unique household ID
-
HhSize: Number of persons
-
Age0to14: Persons in 0 to 14 year old age group
-
Age15to19: Persons in 15 to 19 year old age group
-
Age20to29: Persons in 20 to 29 year old age group
-
Age30to54: Persons in 30 to 54 year old age group
-
Age55to64: Persons in 55 to 64 year old age group
-
Age65Plus: Persons in 65 or older age group
-
HhType: Coded household age composition (e.g. 2-1-0-2-0-0) or Grp for group quarters
This module assigns workers by age to households and to non-institutional group quarters population. It is a simple model which predicts workers as a function of the household type and age composition. There is no responsiveness to jobs or how changes in the job market and demographics might change the worker age composition, but the user can exogenously adjust the relative employment by age group, Azone, and year. The values are the proportions of persons in the age group who are workers relative to the proportions in the estimation year.
-
Relative employment (azone_relative_employment.csv): This file contains ratio of workers to persons by age cohort in model year vs. estimation data year. This file contains five age cohorts:
- RelEmp15to19: Ratio of workers to persons age 15 to 19 in model year vs. in estimation data year
- RelEmp20to29: Ratio of workers to persons age 20 to 29 in model year vs. in estimation data year
- RelEmp30to54: Ratio of workers to persons age 30 to 54 in model year vs. in estimation data year
- RelEmp55to64: Ratio of workers to persons age 55 to 64 in model year vs. in estimation data year
- RelEmp65Plus: Ratio of workers to persons age 65 or older in model year vs. in estimation data year
Here is a snapshot of the file:
Geo Year RelEmp15to19 RelEmp20to29 RelEmp30to54 RelEmp55to64 RelEmp65Plus Multnomah 2005 1 1 1 1 1 Multnomah 2035 1 1 1 1 1
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | Age0to14 | Persons in 0 to 14 year old age group |
VESimHouseholds | CreateHouseholds | Age15to19 | Persons in 15 to 19 year old age group |
VESimHouseholds | CreateHouseholds | Age20to29 | Persons in 20 to 29 year old age group |
VESimHouseholds | CreateHouseholds | Age30to54 | Persons in 30 to 54 year old age group |
VESimHouseholds | CreateHouseholds | Age55to64 | Persons in 55 to 64 year old age group |
VESimHouseholds | CreateHouseholds | Age65Plus | Persons in 65 or older age group |
VESimHouseholds | CreateHouseholds | HhType | Coded household age composition (e.g. 2-1-0-2-0-0) or Grp for group quarters |
-
Wkr15to19: Workers in 15 to 19 year old age group
-
Wkr20to29: Workers in 20 to 29 year old age group
-
Wkr30to54: Workers in 30 to 54 year old age group
-
Wkr55to64: Workers in 55 to 64 year old age group
-
Wkr65Plus: Workers in 65 or older age group
-
Workers: Total number of workers
-
NumWkr: Number of workers residing in the zone
This module predicts the income for each simulated household given the number of workers in each age group and the average per capita income for the Azone where the household resides.
-
Regional income (azone_per_cap_inc.csv): This file contains information on regional average per capita household (HHIncomePC) and group quarters (GQIncomePC) income by forecast year in year 2000 dollars. The data can be obtained from the U.S. Department of Commerce Bureau of Economic Analysis for the current year or from regional or state sources for forecast years. In order to use current year dollars just replace 2000 in column labels with current year. For example, if the data is obtained in year 2005 dollars then the column labels in the file shown below will become HHIncomePC.2005 and GQIncomePC.2005. Here is a snapshot of the file:
Geo Year HHIncomePC.2000 GQIncomePC.2000 Multnomah 2005 32515 0 Multnomah 2035 40000 0
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhSize | Number of persons |
VESimHouseholds | CreateHouseholds | HhType | Coded household age composition (e.g. 2-1-0-2-0-0) or Grp for group quarters |
VESimHouseholds | PredictWorkers | Wkr15to19 | Workers in 15 to 19 year old age group |
VESimHouseholds | PredictWorkers | Wkr20to29 | Workers in 20 to 29 year old age group |
VESimHouseholds | PredictWorkers | Wkr30to54 | Workers in 30 to 54 year old age group |
VESimHouseholds | PredictWorkers | Wkr55to64 | Workers in 55 to 64 year old age group |
VESimHouseholds | PredictWorkers | Wkr65Plus | Workers in 65 or older age group |
-
Income: Total annual household (non-group & group quarters) income in year 1999 dollars
This module creates a set of firms for base year that represents the likely firm composition for the region, given the County Business Pattern data of firms by size and industry. Each firm is described in terms of the number of employees and its industry.
-
Employment (azone_employment_by_naics.csv): This file contains employment data for each of the counties that make up the region. The file is derived from County Business Pattern (CBP) data by county. Industries are categorized by the North American Industrial Classification System (NAICS) 6 digit codes. Firm size categories are:
- n1_4: 1- 4 employees
- n5_9: 5-9 employees
- n10_19: 10-19 employees
- n20_99: 20-99 employees
- n100_249: 100-249 employees
- n250_499: 250-499 employees
- n500_999: 500-999 employees
- n1000: 1,000 or More Employee Size Class
- n1000_1: 1,000-1,499 employees
- n1000_2: 1,500-2,499 employees
- n1000_3: 2,500 to 4, 999 Employees
- n1000_4: Over 5,000 employees
While the county field is required to be present, the business synthesis process does not require a meaningful value and therefore users may simply enter “region”. The consistency in the naming of the "region" should be maintained across all the files that contains the label "county" or "Geo". It is also not necessary to use such detailed NAICS categories if those are not available; the current business synthesis model and subsequent models do not use this level of detail (although future versions of the model may) – at minimum, the number of establishments for all employment types can be provided by size category. Regions with significant employment in industries such as government and public administration that are not covered by the CBP may need to add records to the file that cover this type of employment to more accurately match employment totals in their region. The two additional fields contained in the file are:
- emp: Total number of employees
- est: Total number of establishments
Here is the snapshot of the file:
county year naics emp est n1_4 n5_9 n10_19 n20_49 n50_99 n100_249 n250_499 n500_999 n1000 n1000_1 n1000_2 n1000_3 n1000_4 Multnomah 2005 113110 0 5 2 1 0 2 0 0 0 0 0 0 0 0 0 Multnomah 2005 113310 0 3 2 0 0 1 0 0 0 0 0 0 0 0 0 Multnomah 2005 114111 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Multnomah 2005 114112 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Multnomah 2005 115114 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 Multnomah 2005 115210 0 4 3 1 0 0 0 0 0 0 0 0 0 0 0 Multnomah 2005 115310 0 5 2 0 1 1 1 0 0 0 0 0 0 0 0 Multnomah 2005 212319 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Multnomah 2005 212321 0 4 1 1 1 1 0 0 0 0 0 0 0 0 0
-
naics: The six digit naics code
-
esizecat: The employment size category
-
numbus: The number of businesses
-
emp: The number of employees in a business
This module creates a set of firms for future year that represents the likely firm composition for the region, given the County Business Pattern data of firms by size and industry. Each firm is described in terms of the number of employees and its industry.
-
Employment Growth (EmploymentGrowth): This variable represents a growth rate for employment in the region between the base year and the future year. A rate of 1 indicates no changes in overall employment, a value of more than 1 indicates some growth (e.g., 1.5 = 50% growth) and a value of less than 1 indicates decline in employment. It should be defined in model_parameters.json as follows:
{ "NAME": "EmploymentGrowth", "VALUE": "1.5", "TYPE": "double", "UNITS": "multiplier", "PROHIBIT": "", "ISELEMENTOF": "" }
Package | Module | Outputs | Description |
---|---|---|---|
VESyntheticFirms | CreateBaseSyntheticFirms | naics | The six digit naics code |
VESyntheticFirms | CreateBaseSyntheticFirms | esizecat | The employment size category |
VESyntheticFirms | CreateBaseSyntheticFirms | numbus | The number of businesses |
VESyntheticFirms | CreateBaseSyntheticFirms | emp | The number of employees in a business |
- naics: The six digit naics code
- esizecat: The employment size category
- numbus: The number of businesses
- emp: The number of employees in a business
Top Definitions Inputs/Outputs
Population and employment location characteristics are important variables in the vehicle ownership, travel demand, and accessibility models. There are four place types (urban core, Close-in Community, suburban, and rural and five location categories (residential, commercial, mixed-use, transit-oriented development, and Greenfield). This module utilizes models for households that were developed to estimate location characteristics using National Household Travel Survey data for the base year. Firms are currently allocated randomly to fit the employment allocation inputs since there are no national datasets from which to draw these relationships.
-
Population and Jobs by Place Type (bzone_pop_emp_prop.csv): This file contains the distribution of population and employment among the 13 place types for base and future year. Each column, for each year, must sum to one (1). It is acceptable to have no land use (i.e. a value of 0) in certain categories. The yearly TAZ employment and population totals were summed by the 13 place type and then scaled to total one for both employment and population. Here is a snapshot of the file:
Geo Year Pop Emp Rur 2005 0.05 0.1 Sub_R 2005 0.3 0 Sub_E 2005 0 0.2 Sub_M 2005 0.1 0.1 Sub_T 2005 0 0 CIC_R 2005 0.15 0 CIC_E 2005 0 0.2 CIC_M 2005 0.1 0.1 CIC_T 2005 0 0 UC_R 2005 0.1 0 UC_E 2005 0 0.1 UC_M 2005 0.1 0.1 UC_T 2005 0.1 0.1 Rur 2035 0.05 0.1 Sub_R 2035 0.3 0 Sub_E 2035 0 0.2 Sub_M 2035 0.1 0.1 Sub_T 2035 0 0 CIC_R 2035 0.15 0 CIC_E 2035 0 0.2 CIC_M 2035 0.1 0.1 CIC_T 2035 0 0 UC_R 2035 0.1 0 UC_E 2035 0 0.1 UC_M 2035 0.1 0.1 UC_T 2035 0.1 0.1
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhId | Unique household ID |
VESimHouseholds | CreateHouseholds | Age0to14 | Persons in 0 to 14 year old age group |
VESimHouseholds | CreateHouseholds | Age15to19 | Persons in 15 to 19 year old age group |
VESimHouseholds | CreateHouseholds | Age20to29 | Persons in 20 to 29 year old age group |
VESimHouseholds | CreateHouseholds | Age30to54 | Persons in 30 to 54 year old age group |
VESimHouseholds | CreateHouseholds | Age55to64 | Persons in 55 to 64 year old age group |
VESimHouseholds | CreateHouseholds | Age65Plus | Persons in 65 or older age group |
VESimHouseholds | CreateHouseholds | HhSize | Number of persons |
VESimHouseholds | PredictIncome | Income | Total annual household (non-qroup & group quarters) income in year 1999 dollars |
VESyntheticFirms | CreateBaseSyntheticFirms | naics | The six digit naics code |
VESyntheticFirms | CreateBaseSyntheticFirms | esizecat | The employment size category |
VESyntheticFirms | CreateBaseSyntheticFirms | numbus | The number of businesses |
VESyntheticFirms | CreateBaseSyntheticFirms | emp | The number of employees in a business |
The outputs produced by this module is for base year.
- DrvLevels: The number of people in a household who can drive classified in three categories ("Drv1", "Drv2", "Drv3Plus")
- HhPlaceTypes: A place type as assigned to the households
- EmpPlaceTypes: A place types as assigned to the businesses
- UrbanPop: Total population by place types
- UrbanEmp: Total employees by place types
- UrbanIncome: Total income by place types
Top Definitions Inputs/Outputs
This module is similar to CalculateBasePlaceTypes module but utilizes the future year data to assign population and employment location characteristics.
- Population and Jobs by Place Type (bzone_pop_emp_prop.csv): This is the same file used as input in CalculateBasePlaceTypes module.
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhId | Unique household ID |
VESimHouseholds | CreateHouseholds | Age0to14 | Persons in 0 to 14 year old age group |
VESimHouseholds | CreateHouseholds | Age15to19 | Persons in 15 to 19 year old age group |
VESimHouseholds | CreateHouseholds | Age20to29 | Persons in 20 to 29 year old age group |
VESimHouseholds | CreateHouseholds | Age30to54 | Persons in 30 to 54 year old age group |
VESimHouseholds | CreateHouseholds | Age55to64 | Persons in 55 to 64 year old age group |
VESimHouseholds | CreateHouseholds | Age65Plus | Persons in 65 or older age group |
VESimHouseholds | CreateHouseholds | HhSize | Number of persons |
VESimHouseholds | PredictIncome | Income | Total annual household (non-qroup & group quarters) income in year 1999 dollars |
VESyntheticFirms | CreateFutureSyntheticFirms | naics | The six digit naics code |
VESyntheticFirms | CreateFutureSyntheticFirms | esizecat | The employment size category |
VESyntheticFirms | CreateFutureSyntheticFirms | numbus | The number of businesses |
VESyntheticFirms | CreateFutureSyntheticFirms | emp | The number of employees in a business |
VELandUse | CalculateBasePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateBasePlaceTypes | UrbanEmp | Total employees by place types |
The outputs produced by this module is for future year.
- DrvLevels: The number of people in a household who can drive classified in three categories ("Drv1", "Drv2", "Drv3Plus")
- HhPlaceTypes: A place type as assigned to the households
- EmpPlaceTypes: A place types as assigned to the businesses
- UrbanPop: Total population by place types
- UrbanEmp: Total employees by place types
- UrbanIncome: Total income by place types
Top Definitions Inputs/Outputs
This module calculates freeway, arterial, and public transit supply levels for all years using existing (base) data. The number of lane miles of freeways and arterials is computed for each region based on the change in inventories for a particular scenario. For public transit, the inputs specify the change in transit revenue miles relative to the base. Inputs for each area also specify the revenue mile split between electrified rail and buses.
-
Road lane miles (marea_lane_miles.csv): This file contains the amount of transportation supply by base year in terms of lane miles of freeways and arterial roadways in the region. The base year data is duplicated for future year. Freeway and Arterial are total lane miles for those functional classes in the region. These data can be derived from the Federal Highway Administration’s (FHWA) Highway Statistics data. Here is a snapshot of the file:
Geo Year FwyLaneMi ArtLaneMi Multnomah 2005 250 900 Multnomah 2035 250 900 -
Transit revenue miles (marea_rev_miles_pc.csv): This file contains the amount of transportation supply by base year in terms of the revenue miles operating by the transit system in the region. The base year data is duplicated for future year. Bus and Rail are annual bus and rail revenue miles per capita for the region. These data can be derived from the National Transit Database, where the annual database contains a “service” table that has annual revenue mile data by mode for each transit operator. Here is a snapshot of the file:
Geo Year BusRevMiPC RailRevMiPC Multnomah 2005 19 4 Multnomah 2035 19 4
Package | Module | Outputs | Description |
---|---|---|---|
VELandUse | CalculateBasePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateFuturePlaceTypes | UrbanPop | Total population by place types |
- FwyLaneMiPC: Ratio of urbanized area freeway and expressway lane-miles to urbanized area population
- ArtLaneMiPC: Ratio of urbanized area arterial lane-miles to urbanized area population
- TranRevMiPC: Transit revenue miles per capita for the region
- BusRevMi: Bus revenue miles for the region
- RailRevMi: Rail revenue miles for the region
Top Definitions Inputs/Outputs
This module calculates freeway, arterial, and public transit supply levels for all years using model estimation of future data.
-
Road lane miles (marea_lane_miles.csv): This file contains the amount of transportation supply by base year in terms of lane miles of freeways and arterial roadways in the region. The base year data is duplicated for future year. Freeway and Arterial are total lane miles for those functional classes in the region. These data can be derived from the Federal Highway Administration’s (FHWA) Highway Statistics data. Here is a snapshot of the file:
Geo Year FwyLaneMi ArtLaneMi Multnomah 2005 250 900 Multnomah 2035 250 900 -
Transit revenue miles (marea_rev_miles_pc.csv): This file contains the amount of transportation supply by base year in terms of the revenue miles operating by the transit system in the region. The base year data is duplicated for future year. Bus and Rail are annual bus and rail revenue miles per capita for the region. These data can be derived from the National Transit Database, where the annual database contains a “service” table that has annual revenue mile data by mode for each transit operator. Here is a snapshot of the file:
Geo Year BusRevMiPC RailRevMiPC Multnomah 2005 19 4 Multnomah 2035 19 4
-
FwyLaneMiGrowth: The variable indicates the percent increase in supply of freeways lane miles in the future year compared to base year. By default, the transportation supply is assumed to grow in line with population increase; therefore a value of 1 indicates growth in proportion with population growth. A value less than 1 indicates that there will be less freeway lane mile supply, per person, in the future. A value of 1 indicates faster freeway expansion than population growth. It should be defined in model_parameters.json as follows:
{ "NAME": "FwyLaneMiGrowth", "VALUE": "1", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
ArtLaneMiGrowth: The variable indicates the percent increase in supply of arterial lane miles in the future year compared to base year. It is a similar value to freeway except that it measures arterial lane mile growth. It is also proportional to population growth. It should be defined in model_parameters.json as follows:
{ "NAME" : "ArtLaneMiGrowth", "VALUE": "1", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
BusRevMiPCGrowth: It is the percent increase in transit revenue miles per capita for bus. It behaves in a similar way to the freeway and rail values in that a value of 1 indicates per capita revenue miles stays constant. It should be defined in model_parameters.json as follows:
{ "NAME" : "BusRevMiPCGrowth", "VALUE": "1", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
RailRevMiPCGrowth: It is the percent increase in transit revenue miles per capita for rail. This encompasses all rail modes, from light rail through to commuter rail. It should be defined in model_parameters.json as follows:
{ "NAME" : "RailRevMiPCGrowth", "VALUE": "1", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
Package | Module | Outputs | Description |
---|---|---|---|
VELandUse | CalculateBasePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateFuturePlaceTypes | UrbanPop | Total population by place types |
- FwyLaneMiPCFuture: Ratio of urbanized area freeway and expressway lane-miles to urbanized area population calculated using model estimation of future data
- ArtLaneMiPCFuture: Ratio of urbanized area arterial lane-miles to urbanized area population calculated using model estimation of future data
- TranRevMiPCFuture: Transit revenue miles per capita for the region calculated using model estimation of future data
- BusRevMiFuture: Bus revenue miles for the region calculated using model estimation of future data
- RailRevMiFuture: Rail revenue miles for the region calculated using model estimation of future data
Top Definitions Inputs/Outputs
This module assigns each household a number of vehicles it is likely to own based on the number of persons of driving age in the household, whether only elderly persons live in the household, the income of the household, the population density where the household lives, the freeway supply, the transit supply, and whether the household is located in an urban mixed-use area.
-
Vehicle fuel economy (model_veh_mpg_by_year.csv): This file contains the estimates and forecasts of average fuel economy and power economy in miles per gallon for autos, light trucks, heavy trucks (trucks) and miles per kilowatt for trains by vehicle model year. Note that this is not the fleet average for that year. It is the average for new vehicles sold in that year. The fuel economy is the same for all fuel types and is measured in gasoline equivalent gallons (i.e., energy content of a gallon of gasoline). This file is used in the calculations of fuel consumption. This file can be used to test alternative vehicle development scenarios, such as improved technology and/or fuel economy standards that lead to higher vehicle fuel economies. Here is a snapshot of the file:
ModelYear AutoMpg LtTruckMpg TruckMpg BusMpg TrainMpg 1975 15.1 12.7 5.1 4.2 0.098266 1976 16.6 13.2 5.1 4.1 0.098266 1977 17.4 14.1 5.1 4.1 0.098266 1978 19.2 13.7 5.1 4 0.098266 2046 63.7 41.1 5.6 4.8 0.121191 2047 63.7 41.1 5.6 4.8 0.121191 2048 63.7 41.1 5.6 4.8 0.121191 2049 63.7 41.1 5.6 4.8 0.121191 2050 63.7 41.1 5.6 4.8 0.121191
-
Light Truck Proportions (LtTruckProp): The proportion of household vehicles that are light trucks (SUVs, pickup trucks) as opposed to autos. It should be defined in model_parameters.json as follows:
{ "NAME" : "LtTruckProp", "VALUE": "0.45", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhId | Unique household ID |
VESimHouseholds | CreateHouseholds | Age0to14 | Persons in 0 to 14 year old age group |
VESimHouseholds | CreateHouseholds | Age65Plus | Persons in 65 or older age group |
VESimHouseholds | CreateHouseholds | HhSize | Number of persons |
VESimHouseholds | CreateHouseholds | HhType | Coded household age composition (e.g. 2-1-0-2-0-0) or Grp for group quarters |
VESimHouseholds | PredictIncome | Income | Total annual household (non-qroup & group quarters) income in year 1999 dollars |
VELandUse | CalculateFuturePlaceTypes | DrvLevels | The number of people in a household who can drive classified in three categories ("Drv1", "Drv2", "Drv3Plus") |
VELandUse | CalculateFuturePlaceTypes | HhPlaceTypes | A place type as assigned to the households |
VETransportSupply | CreateBaseAccessibility | FwyLaneMiPC | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population |
VETransportSupply | CreateBaseAccessibility | TranRevMiPC | Transit revenue miles per capita for the region |
- VehId: Unique vehicle ID
- Type: Vehicle body type: Auto = automobile, LtTrk = light trucks (i.e. pickup, SUV, Van)
- Age: Vehicle age in years
- Mileage: Mileage of vehicles (automobiles and light truck)
- DvmtProp: Proportion of average vehicle DVMT
- Vehicles: Number of automobiles and light trucks owned or leased by the household
- NumLtTrk: Number of light trucks (pickup, sport-utility vehicle, and van) owned or leased by household
- NumAuto: Number of automobiles (i.e. 4-tire passenger vehicles that are not light trucks) owned or leased by household
Top Definitions Inputs/Outputs
This module is similar to AssignVehicleFeatures, but uses model estimation of future year data on population and transportation supply as a basis of the calculations.
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhId | Unique household ID |
VESimHouseholds | CreateHouseholds | Age0to14 | Persons in 0 to 14 year old age group |
VESimHouseholds | CreateHouseholds | Age65Plus | Persons in 65 or older age group |
VESimHouseholds | CreateHouseholds | HhSize | Number of persons |
VESimHouseholds | CreateHouseholds | HhType | Coded household age composition (e.g. 2-1-0-2-0-0) or Grp for group quarters |
VESimHouseholds | PredictIncome | Income | Total annual household (non-qroup & group quarters) income in year 1999 dollars |
VELandUse | CalculateFuturePlaceTypes | DrvLevels | The number of people in a household who can drive classified in three categories ("Drv1", "Drv2", "Drv3Plus") |
VELandUse | CalculateFuturePlaceTypes | HhPlaceTypes | A place type as assigned to the households |
VETransportSupply | CreateFutureAccessibility | FwyLaneMiPCFuture | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | TranRevMiPCFuture | Transit revenue miles per capita for the region calculated using future (estimated) data |
-
VehIdFuture: Unique vehicle ID
-
TypeFuture: Vehicle body type: Auto = automobile, LtTrk = light trucks (i.e. pickup, SUV, Van)
-
AgeFuture: Vehicle age in years
-
MileageFuture: Mileage of vehicles (automobiles and light truck)
-
DvmtPropFuture: Proportion of average vehicle DVMT
-
VehiclesFuture: Number of automobiles and light trucks owned or leased by the household
-
NumLtTrkFuture: Number of light trucks (pickup, sport-utility vehicle, and van) owned or leased by household
-
NumAutoFuture: Number of automobiles (i.e. 4-tire passenger vehicles that are not light trucks) owned or leased by household
Top](#contents) Definitions Inputs/Outputs
This module calculates the average daily vehicle miles traveled, auto and transit trips for each household is modeled based on household information determined by previous modules for the base conditions. The model is sensitive to household income, population density of the neighborhood where the household resides, number of household vehicles, whether the household owns no vehicles, the levels of public transportation and freeway supplies in the region, the driving age population in the household, the presence of persons over age 65, and whether the neighborhood is characterized by mixed-use development. It also calculates truck and bus Vehicle Miles Traveled (VMT). Regional truck VMT is calculated based on changes in the regional household income. As a default, a one-to-one relationship between regional income growth and truck VMT growth is assumed. In other words, a doubling of total regional income would result in a doubling of truck VMT. Bus VMT is calculated from bus revenue miles that are factored up to total vehicle miles to account for miles driven in non-revenue service.
-
Emission Rate (model_fuel_co2.csv): The emissions rate file contains information on “pump-to-wheels” CO2 equivalent emissions by fuel type in grams per mega Joule of fuel energy content. There is one row for each fuel type: ULSD, biodiesel, RFG (reformulated gasoline), CARBOB (gasoline formulated to be blended with ethanol), ethanol, and CNG. Electricity is an optional fuel type not displayed in the table. If the intensity for power generation is known then that can be entered at the end of the row with the Fuel column containing the word Electricity and the respective value next to it. This file is used to convert fuel use to CO2 equivalent emissions. Here is a snapshot of the file:
Fuel Intensity ULSD 77.19 Biodiesel 76.81 RFG 75.65 CARBOB 75.65 Ethanol 74.88 Cng 62.14 -
Vehicle VMT proportion by fuel (model_fuel_prop_by_veh.csv): The file contains allocation of VMT for each of the four road vehicle types that VERPAT represents (auto, light truck, bus, and heavy truck) to different fuel types (Diesel, CNG, Gasoline). This file is used in the calculations of fuel consumption. This file can be used to test alternative fuel scenarios by varying the shares of non-gasoline fuels.
- PropDiesel: The proportion of the fleet that uses diesel
- PropCng: The proportion of the fleet that uses CNG
- PropGas: The proportion of the fleet that uses gasoline
Here is a snapshot of the file:
VehType PropDiesel PropCng PropGas Auto 0.007 0 0.993 LtTruck 0.04 0 0.96 Bus 0.995 0.005 0 Truck 0.945 0.005 0.05 -
Fuel composition (model_fuel_composition_prop.csv): This file contains the composition of fuel used for each of the four road vehicle types that VERPAT represents (auto, light truck, bus, and heavy truck). This file is also used in the calculations of fuel consumption along with the aforementioned file. The column labels in the file are:
- GasPropEth: The average ethanol proportion in gasoline sold
- DieselPropBio: The average biodiesel proportion in diesel sold
Here is a snapshot of the file:
VehType GasPropEth DieselPropBio Auto 0.1 0.05 LtTruck 0.1 0.05 Bus 0.1 0.05 Truck 0.1 0.01 -
Truck and bus vmt (region_truck_bus_vmt.csv): This file contains the region’s proportion of VMT by truck and bus as well as the distribution of that VMT across functional classes (freeway, arterial, other). The file includes one row for bus VMT data and one row for Truck VMT data. It should be noted that it is not necessary to enter values in the PropVmt column for BusVmt as this is calculated using the values in the transportation_supply.csv user input file. The truck VMT proportion (PropVMT column, TruckVMT row) can be obtained from Highway Performance Monitoring System data and local sources or the regional travel demand model if one exists. The proportions of VMT by functional class can be derived from the Federal Highway Cost Allocation Study and data from transit operators. The Federal Highway Cost Allocation Study (Table II-6, 1997 Federal Highway Cost Allocation Study Final Report, Chapter II is used to calculate the average proportion of truck VMT by functional class. Data from transit authorities are used to calculate the proportions of bus VMT by urban area functional class. Here is a snapshot of the file:
Type PropVmt Fwy Art Other BusVmt 0 0.15 0.591854 0.258146 TruckVmt 0.08 0.452028 0.398645 0.149327 -
Plugin hybrid electric vehicles characteristics (model_phev_range_prop_mpg_mpkwh.csv): This file contains the estimates and forecasts of range, fuel efficiency (mpg), power efficiency (mpkwh), and proportions of automobiles and light trucks that are plugin hybrid electric vehicles by vehicle model year. Note that this is not the fleet average for that year. It is the average of new vehicles sold in that year. This file is used in identification of plugin hybrid electric and electric vehicles. Here is a snapshot of the file:
ModelYear AutoPhevRange AutoPropPhev AutoMpkwh AutoMpg LtTruckPhevRange LtTruckPropPhev LtTruckMpkwh LtTruckMpg 1975 0 0 0 0 0 0 0 0 1976 0 0 0 0 0 0 0 0 1977 0 0 0 0 0 0 0 0 1978 0 0 0 0 0 0 0 0 1979 0 0 0 0 0 0 0 0 2045 40 0.66 4.375 74.5 40 0.586666667 2.875 58.2 2046 40 0.708 4.4 74.9 40 0.629333333 2.9 58.5 2047 40 0.756 4.425 75.3 40 0.672 2.925 58.8 2048 40 0.816 4.45 75.6 40 0.725333333 2.95 59.1 2049 40 0.864 4.475 76 40 0.768 2.975 59.3 2050 40 0.9 4.5 76.4 40 -
Hybrid electric vehicles characteristics (model_hev_prop_mpg.csv): This file contains the estimates and forecasts of fuel efficiency (mpg), and proportions of automobiles and light trucks that are hybrid electric vehicles (that are neither plugin hybrid nor electric vehicle) by vehicle model year. Note that this is not the fleet average for that year. It is the average of new vehicles sold in that year. This file is used in identification of hybrid electric that are not plugin hybrid or electric vehicles. Here is a snapshot of the file:
ModelYear AutoPropHev AutoHevMpg LtTruckPropHev LtTruckHevMpg 1975 0 0 0 0 1976 0 0 0 0 1977 0 0 0 0 1978 0 0 0 0 1979 0 0 0 0 1980 0 0 0 0 2046 0.981481481 74.2 0.736111111 55.4 2047 0.981481481 74.5 0.736111111 55.6 2048 1 74.9 0.75 55.9 2049 1 75.2 0.75 56.1 2050 1 75.5 0.75 56.3 -
Electric vehicles characteristics (model_ev_range_prop_mpkwh.csv): This file contains the estimates and forecasts of range, power efficiency (mpkwh), and proportions of automobiles and light trucks that are electric vehicles by vehicle model year. Note that this is not the fleet average for that year. It is the average of new vehicles sold in that year. This file is used in identification of electric vehicles. Here is a snapshot of the file:
ModelYear AutoRange AutoPropEv AutoMpkwh LtTruckRange LtTruckPropEv LtTruckMpkwh 1975 0 0 0 0 0 0 1976 0 0 0 0 0 0 1977 0 0 0 0 0 0 1978 0 0 0 0 0 0 1979 0 0 0 0 0 0 2046 277.5 0.72 4.4 185 0.56 2.9 2047 283.125 0.75 4.425 188.75 0.583333333 2.925 2048 288.75 0.795 4.45 192.5 0.618333333 2.95 2049 294.375 0.855 4.475 196.25 0.665 2.975 2050 300 0.9 4.5 200 0.7 3
-
Base cost per mile (BaseCostPerMile): Base cost per mile in dollars for transportation costs used in the travel demand model to initially represent travel as close to unconstrained by transportation costs. The transportation costs are then fully constrained later in the model as travel reductions caused by budget constraints are estimated. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseCostPerMile", "VALUE": "0.04", "TYPE" : "compound", "UNITS" : "USD/MI", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Dvmt budget proportion (DvmtBudgetProp): The proportion of household budget that can be allocated to transportation spending. The travel demand models includes a constraint that reduces household travel if too high a proportion of household spending is spent on transportation. It should be defined in model_parameters.json as follows:
{ "NAME" : "DvmtBudgetProp", "VALUE": "0.1", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0', '> 1')", "ISELEMENTOF" : "" }
-
Annual vmt inflator (AnnVmtInflator): Factor to convert VMT between annual and average daily amounts. It should be defined in model_parameters.json as follows:
{ "NAME" : "AnnVmtInflator", "VALUE": "365", "TYPE" : "integer", "UNITS" : "DAYS", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Fuel cost (FuelCost): Average cost per gallon of fuel (before taxes are added). It should be defined in model_parameters.json as follows:
{ "NAME" : "FuelCost", "VALUE": "1.82", "TYPE" : "compound", "UNITS" : "USD/GAL", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Power cost (KwhCost): Average cost per kwh of power consumption (before taxes are added). It should be defined in model_parameters.json as follows:
{ "NAME" : "KwhCost", "VALUE": "0.257", "TYPE" : "compound", "UNITS" : "USD/KWH", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Gas tax (GasTax): Average cost per gallon of fuel of gas taxes. It should be defined in model_parameters.json as follows:
{ "NAME" : "GasTax", "VALUE": "0.424", "TYPE" : "compound", "UNITS" : "USD/GAL", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Light vehicle dvmt (BaseLtVehDvmt): Total light vehicle daily VMT for the base year in thousands of miles. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. Light vehicle daily VMT can be estimated by subtracting truck and bus VMT from total VMT provided in the Highway Performance Monitoring System (HPMS). Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseLtVehDvmt", "VALUE": "27244", "TYPE" : "compound", "UNITS" : "MI/DAY", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Dvmt proportion by functional class (BaseFwyArtProp): The proportions of daily VMT for light vehicles that takes place on freeways and arterials (i.e., the remainder of VMT takes place on lower functional class roads for the base year. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. The proportions of light vehicle daily VMT on freeways and arterials can be derived from the HPMS data. Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseFwyArtProp", "VALUE": "0.77", "TYPE" : "double", "UNITS" : "proportion", "PROHIBIT" : "c('NA', '< 0', '> 1')", "ISELEMENTOF" : "" }
-
Truck vmt growth multiplier (TruckVmtGrowthMultiplier): Rate at which heavy truck VMT growth in relation to total regional household income growth in the region. A value of 1 indicates that heavy truck VMT grows at the same rate as total regional household income. A value less than 1 means slower growth in truck VMT, and greater than 1 means faster growth in truck VMT than total regional household income. It should be defined in model_parameters.json as follows:
{ "NAME" : "TruckVmtGrowthMultiplier", "VALUE": "1", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Carbon cost (CarbonCost): Average cost of green house gas emissions. It should be defined in model_parameters.json as follows:
{ "NAME" : "CarbonCost", "VALUE": "0", "TYPE" : "compound", "UNITS" : "USD/GAL", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Vmt cost (VmtCost): Average cost of vehicle miles traveled. It should be defined in model_parameters.json as follows:
{ "NAME" : "VmtCost", "VALUE": "0", "TYPE" : "compound", "UNITS" : "USD/GAL", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhId | Unique household ID |
VESimHouseholds | CreateHouseholds | HhSize | Number of persons |
VESimHouseholds | CreateHouseholds | Age0to14 | Persons in 0 to 14 year old age group |
VESimHouseholds | CreateHouseholds | Age15to19 | Persons in 15 to 19 year old age group |
VESimHouseholds | CreateHouseholds | Age20to29 | Persons in 20 to 29 year old age group |
VESimHouseholds | CreateHouseholds | Age30to54 | Persons in 30 to 54 year old age group |
VESimHouseholds | CreateHouseholds | Age55to64 | Persons in 55 to 64 year old age group |
VESimHouseholds | CreateHouseholds | Age65Plus | Persons in 65 or older age group |
VESimHouseholds | PredictIncome | Income | Total annual household (non-qroup & group quarters) income in year 1999 dollars |
VELandUse | CalculateBasePlaceTypes | UrbanIncome | Total income by place types |
VELandUse | CalculateFuturePlaceTypes | HhPlaceTypes | A place type as assigned to the households |
VELandUse | CalculateFuturePlaceTypes | UrbanIncome | Total income by place types |
VETransportSupply | CreateBaseAccessibility | FwyLaneMiPC | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population |
VETransportSupply | CreateBaseAccessibility | TranRevMiPC | Transit revenue miles per capita for the region |
VEHouseholdVehicles | AssignVehicleFeatures | VehId | Unique vehicle ID |
VEHouseholdVehicles | AssignVehicleFeatures | Type | Vehicle body type: Auto = automobile, LtTrk = light trucks (i.e. pickup, SUV, Van) |
VEHouseholdVehicles | AssignVehicleFeatures | Mileage | Mileage of vehicles (automobiles and light truck) |
VEHouseholdVehicles | AssignVehicleFeatures | DvmtProp | Proportion of average vehicle DVMT |
VEHouseholdVehicles | AssignVehicleFeatures | Vehicles | Number of automobiles and light trucks owned or leased by the household |
VEHouseholdVehicles | AssignVehicleFeatures | Age | Age of the vehicles |
- TruckDvmt: Average daily vehicle miles traveled by trucks
- Dvmt (bzones): Average daily vehicle miles traveled by place types
- Dvmt (households): Average daily vehicle miles traveled by household
- Dvmt (vehicles): Average daily vehicle miles traveled by each vehicle
- EvDvmt (bzones): Average daily electric vehicle miles traveled by place types
- EvDvmt (vehicles): Average daily electric vehicle miles traveled by each vehicle
- HcDvmt (bzones): Average daily vehicle (ICE) miles traveled by place types
- HcDvmt (vehicles): Average daily vehicle (ICE) miles traveled by each vehicle
- FuelGallons: Average daily fuel consumption in gallons by each household
- FuelCo2e: Average daily Co2 equivalent greenhouse gas emissions by each household due to traditional fuel consumption
- ElecKwh: Average daily power consumption in kilowatt-hours by each household
- ElecCo2e: Average daily Co2 equivalent greenhouse gas emissions by each household due to power consumption
- MpKwh: Power efficiency of electric vehicles by each vehicle
- Powertrain: Powertrain of each vehicle.
- DailyParkingCost: Average daily parking cost by each household
- FutureCostPerMile: Total cost per mile for future year for each household
Top Definitions Inputs/Outputs
This module is similar to CalculateTravelDemand module but uses future year (estimated) data for transportation supply and for vehicles like number of vehicles, mileage, type, etc.
-
Emission Rate (model_fuel_co2.csv): The emissions rate file contains information on “pump-to-wheels” CO2 equivalent emissions by fuel type in grams per mega Joule of fuel energy content. There is one row for each fuel type: ULSD, biodiesel, RFG (reformulated gasoline), CARBOB (gasoline formulated to be blended with ethanol), ethanol, and CNG. This file is used to convert fuel use to CO2 equivalent emissions. Here is a snapshot of the file:
Fuel Intensity ULSD 77.19 Biodiesel 76.81 RFG 75.65 CARBOB 75.65 Ethanol 74.88 Cng 62.14 -
Vehicle VMT proportion by fuel (model_fuel_prop_by_veh.csv): The file contains allocation of VMT for each of the four road vehicle types that VERPAT represents (auto, light truck, bus, and heavy truck) to different fuel types (Diesel, CNG, Gasoline). This file is used in the calculations of fuel consumption. This file can be used to test alternative fuel scenarios by varying the shares of non-gasoline fuels.
- PropDiesel: The proportion of the fleet that uses diesel
- PropCng: The proportion of the fleet that uses CNG
- PropGas: The proportion of the fleet that uses gasoline
Here is a snapshot of the file:
VehType PropDiesel PropCng PropGas Auto 0.007 0 0.993 LtTruck 0.04 0 0.96 Bus 0.995 0.005 0 Truck 0.945 0.005 0.05 -
Fuel composition (model_fuel_composition_prop.csv): This file contains the composition of fuel used for each of the four road vehicle types that VERPAT represents (auto, light truck, bus, and heavy truck). This file is also used in the calculations of fuel consumption along with the aforementioned file. The column labels in the file are:
- GasPropEth: The average ethanol proportion in gasoline sold
- DieselPropBio: The average biodiesel proportion in diesel sold
Here is a snapshot of the file:
VehType GasPropEth DieselPropBio Auto 0.1 0.05 LtTruck 0.1 0.05 Bus 0.1 0.05 Truck 0.1 0.01 -
Truck and bus vmt (region_truck_bus_vmt.csv): This file contains the region’s proportion of VMT by truck and bus as well as the distribution of that VMT across functional classes (freeway, arterial, other). The file includes one row for bus VMT data and one row for Truck VMT data. It should be noted that it is not necessary to enter values in the PropVmt column for BusVmt as this is calculated using the values in the transportation_supply.csv user input file. The truck VMT proportion (PropVMT column, TruckVMT row) can be obtained from Highway Performance Monitoring System data and local sources or the regional travel demand model if one exists. The proportions of VMT by functional class can be derived from the Federal Highway Cost Allocation Study and data from transit operators. The Federal Highway Cost Allocation Study (Table II-6, 1997 Federal Highway Cost Allocation Study Final Report, Chapter II is used to calculate the average proportion of truck VMT by functional class. Data from transit authorities are used to calculate the proportions of bus VMT by urban area functional class. Here is a snapshot of the file:
Type PropVmt Fwy Art Other BusVmt 0 0.15 0.591854 0.258146 TruckVmt 0.08 0.452028 0.398645 0.149327 -
Plugin hybrid electric vehicles characteristics (model_phev_range_prop_mpg_mpkwh.csv): This file contains the estimates and forecasts of range, fuel efficiency (mpg), power efficiency (mpkwh), and proportions of automobiles and light trucks that are plugin hybrid electric vehicles by vehicle model year. Note that this is not the fleet average for that year. It is the average of new vehicles sold in that year. This file is used in identification of plugin hybrid electric and electric vehicles. Here is a snapshot of the file:
ModelYear AutoPhevRange AutoPropPhev AutoMpkwh AutoMpg LtTruckPhevRange LtTruckPropPhev LtTruckMpkwh LtTruckMpg 1975 0 0 0 0 0 0 0 0 1976 0 0 0 0 0 0 0 0 1977 0 0 0 0 0 0 0 0 1978 0 0 0 0 0 0 0 0 1979 0 0 0 0 0 0 0 0 2045 40 0.66 4.375 74.5 40 0.586666667 2.875 58.2 2046 40 0.708 4.4 74.9 40 0.629333333 2.9 58.5 2047 40 0.756 4.425 75.3 40 0.672 2.925 58.8 2048 40 0.816 4.45 75.6 40 0.725333333 2.95 59.1 2049 40 0.864 4.475 76 40 0.768 2.975 59.3 2050 40 0.9 4.5 76.4 40 -
Hybrid electric vehicles characteristics (model_hev_prop_mpg.csv): This file contains the estimates and forecasts of fuel efficiency (mpg), and proportions of automobiles and light trucks that are hybrid electric vehicles (that are neither plugin hybrid nor electric vehicle) by vehicle model year. Note that this is not the fleet average for that year. It is the average of new vehicles sold in that year. This file is used in identification of hybrid electric that are not plugin hybrid or electric vehicles. Here is a snapshot of the file:
ModelYear AutoPropHev AutoHevMpg LtTruckPropHev LtTruckHevMpg 1975 0 0 0 0 1976 0 0 0 0 1977 0 0 0 0 1978 0 0 0 0 1979 0 0 0 0 1980 0 0 0 0 2046 0.981481481 74.2 0.736111111 55.4 2047 0.981481481 74.5 0.736111111 55.6 2048 1 74.9 0.75 55.9 2049 1 75.2 0.75 56.1 2050 1 75.5 0.75 56.3 -
Electric vehicles characteristics (model_ev_range_prop_mpkwh.csv): This file contains the estimates and forecasts of range, power efficiency (mpkwh), and proportions of automobiles and light trucks that are electric vehicles by vehicle model year. Note that this is not the fleet average for that year. It is the average of new vehicles sold in that year. This file is used in identification of electric vehicles. Here is a snapshot of the file:
ModelYear AutoRange AutoPropEv AutoMpkwh LtTruckRange LtTruckPropEv LtTruckMpkwh 1975 0 0 0 0 0 0 1976 0 0 0 0 0 0 1977 0 0 0 0 0 0 1978 0 0 0 0 0 0 1979 0 0 0 0 0 0 2046 277.5 0.72 4.4 185 0.56 2.9 2047 283.125 0.75 4.425 188.75 0.583333333 2.925 2048 288.75 0.795 4.45 192.5 0.618333333 2.95 2049 294.375 0.855 4.475 196.25 0.665 2.975 2050 300 0.9 4.5 200 0.7 3
-
Base cost per mile (BaseCostPerMile): Base cost per mile in dollars for transportation costs used in the travel demand model to initially represent travel as close to unconstrained by transportation costs. The transportation costs are then fully constrained later in the model as travel reductions caused by budget constraints are estimated. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseCostPerMile", "VALUE": "0.04", "TYPE" : "compound", "UNITS" : "USD/MI", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Dvmt budget proportion (DvmtBudgetProp): The proportion of household budget that can be allocated to transportation spending. The travel demand models includes a constraint that reduces household travel if too high a proportion of household spending is spent on transportation. It should be defined in model_parameters.json as follows:
{ "NAME" : "DvmtBudgetProp", "VALUE": "0.1", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0', '> 1')", "ISELEMENTOF" : "" }
-
Annual vmt inflator (AnnVmtInflator): Factor to convert VMT between annual and average daily amounts. It should be defined in model_parameters.json as follows:
{ "NAME" : "AnnVmtInflator", "VALUE": "365", "TYPE" : "integer", "UNITS" : "DAYS", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Fuel cost (FuelCost): Average cost per gallon of fuel (before taxes are added). It should be defined in model_parameters.json as follows:
{ "NAME" : "FuelCost", "VALUE": "1.82", "TYPE" : "compound", "UNITS" : "USD/GAL", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Power cost (KwhCost): Average cost per kwh of power consumption (before taxes are added). It should be defined in model_parameters.json as follows:
{ "NAME" : "KwhCost", "VALUE": "0.257", "TYPE" : "compound", "UNITS" : "USD/KWH", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Gas tax (GasTax): Average cost per gallon of fuel of gas taxes. It should be defined in model_parameters.json as follows:
{ "NAME" : "GasTax", "VALUE": "0.424", "TYPE" : "compound", "UNITS" : "USD/GAL", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Light vehicle dvmt (BaseLtVehDvmt): Total light vehicle daily VMT for the base year in thousands of miles. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. Light vehicle daily VMT can be estimated by subtracting truck and bus VMT from total VMT provided in the Highway Performance Monitoring System (HPMS). Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseLtVehDvmt", "VALUE": "27244", "TYPE" : "compound", "UNITS" : "MI/DAY", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Dvmt proportion by functional class (BaseFwyArtProp): The proportions of daily VMT for light vehicles that takes place on freeways and arterials (i.e., the remainder of VMT takes place on lower functional class roads for the base year. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. The proportions of light vehicle daily VMT on freeways and arterials can be derived from the HPMS data. Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseFwyArtProp", "VALUE": "0.77", "TYPE" : "double", "UNITS" : "proportion", "PROHIBIT" : "c('NA', '< 0', '> 1')", "ISELEMENTOF" : "" }
-
Truck vmt growth multiplier (TruckVmtGrowthMultiplier): Rate at which heavy truck VMT growth in relation to total regional household income growth in the region. A value of 1 indicates that heavy truck VMT grows at the same rate as total regional household income. A value less than 1 means slower growth in truck VMT, and greater than 1 means faster growth in truck VMT than total regional household income. It should be defined in model_parameters.json as follows:
{ "NAME" : "TruckVmtGrowthMultiplier", "VALUE": "1", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Carbon cost (CarbonCost): Average cost of green house gas emissions. It should be defined in model_parameters.json as follows:
{ "NAME" : "CarbonCost", "VALUE": "0", "TYPE" : "compound", "UNITS" : "USD/GAL", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Vmt cost (VmtCost): Average cost of vehicle miles traveled. It should be defined in model_parameters.json as follows:
{ "NAME" : "VmtCost", "VALUE": "0", "TYPE" : "compound", "UNITS" : "USD/GAL", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhId | Unique household ID |
VESimHouseholds | CreateHouseholds | HhSize | Number of persons |
VESimHouseholds | CreateHouseholds | Age0to14 | Persons in 0 to 14 year old age group |
VESimHouseholds | CreateHouseholds | Age15to19 | Persons in 15 to 19 year old age group |
VESimHouseholds | CreateHouseholds | Age20to29 | Persons in 20 to 29 year old age group |
VESimHouseholds | CreateHouseholds | Age30to54 | Persons in 30 to 54 year old age group |
VESimHouseholds | CreateHouseholds | Age55to64 | Persons in 55 to 64 year old age group |
VESimHouseholds | CreateHouseholds | Age65Plus | Persons in 65 or older age group |
VESimHouseholds | PredictIncome | Income | Total annual household (non-qroup & group quarters) income in year 1999 dollars |
VELandUse | CalculateBasePlaceTypes | UrbanIncome | Total income by place types |
VELandUse | CalculateFuturePlaceTypes | HhPlaceTypes | A place type as assigned to the households |
VELandUse | CalculateFuturePlaceTypes | UrbanIncome | Total income by place types |
VETransportSupply | CreateFutureAccessibility | FwyLaneMiPCFuture | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population |
VETransportSupply | CreateFutureAccessibility | TranRevMiPCFuture | Transit revenue miles per capita for the region |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | VehIdFuture | Unique vehicle ID |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | TypeFuture | Vehicle body type: Auto = automobile, LtTrk = light trucks (i.e. pickup, SUV, Van) |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | MileageFuture | Mileage of vehicles (automobiles and light truck) |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | DvmtPropFuture | Proportion of average vehicle DVMT |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | VehiclesFuture | Number of automobiles and light trucks owned or leased by the household |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | AgeFuture | Age of the vehicles |
-
TruckDvmtFuture: Average daily vehicle miles traveled by trucks estimated using model estimations of future year data
-
DvmtFuture (bzones): Average daily vehicle miles traveled by place types estimated using model estimations of future year data
-
DvmtFuture (households): Average daily vehicle miles traveled by household estimated using model estimations of future year data
-
DvmtFuture (vehicles): Average daily vehicle miles traveled by each vehicle estimated using model estimations of future year data
-
EvDvmtFuture (bzones): Average daily electric vehicle miles traveled by place types estimated using model estimations of future year data
-
EvDvmtFuture (vehicles): Average daily electric vehicle miles traveled by each vehicle estimated using model estimations of future year data
-
HcDvmtFuture (bzones): Average daily vehicle (ICE) miles traveled by place types estimated using model estimations of future year data
-
HcDvmtFuture (vehicles): Average daily vehicle (ICE) miles traveled by each vehicle estimated using model estimations of future year data
-
FuelGallonsFuture: Average daily fuel consumption in gallons by each household estimated using model estimations of future year data
-
FuelCo2eFuture: Average daily Co2 equivalent greenhouse gas emissions by each household due to traditional fuel consumption estimated using model estimations of future year data
-
ElecKwhFuture: Average daily power consumption in kilowatt-hours by each household estimated using model estimations of future year data
-
ElecCo2eFuture: Average daily Co2 equivalent greenhouse gas emissions by each household due to power consumption estimated using model estimations of future year data
-
MpKwhFuture: Power efficiency of electric vehicles by each vehicle estimated using model estimations of future year data
-
PowertrainFuture: Powertrain of each vehicle estimated using model estimations of future year data
-
DailyParkingCostFuture: Average daily parking cost by each household estimated using model estimations of future year data
-
FutureCostPerMileFuture: Total cost per mile for future year for each household estimated using model estimations of future year data
Top](#contents) Definitions Inputs/Outputs
This module calculates the amount of congestion using estimated data. Auto, and light truck VMT, truck VMT and bus VMT are allocated to freeways, arterials, and other roadways. Truck and bus VMT are allocated based on mode-specific data, and auto and light truck VMT are allocated based on a combination of factors and a model that is sensitive to the relative supplies of freeway and arterial lane miles. System-wide ratios of VMT to lane miles for freeways and arterials are used to allocate VMT to congestion levels using congestion levels defined by the Texas Transportation Institute for the Urban Mobility Report. Each freeway and arterial congestion level is associated with an average trip speed for conditions that do and do not include ITS treatment for incident management on the roadway. Overall average speeds by congestion level are calculated based on input assumptions about the degree of incident management. Speed vs. fuel efficiency relationships for light vehicles, trucks, and buses are used to adjust the fleet fuel efficiency averages computed for the region.
-
Percent road miles with ITS treatment (azone_its_prop.csv): This file is an estimate of the proportion of road miles that have improvements which reduce incidents through ITS treatments in both the base and future years. Values entered should be between 0 and 1, with 1 indicating that 100% of road miles are treated. The ITS policy measures the effects of incident management supported by ITS. The ITS table is used to inform the congestion model and the travel demand model. The model uses the mean speeds with and without incidents to compute an overall average speed by road type and congestion level providing a simple level of sensitivity to the potential effects of incident management programs on delay and emissions. The ITS treatments are evaluated only on freeways and arterials. The ITS treatments that can be evaluated are those that the analyst considers will reduce non-recurring congestion due to incidents. This policy does not deal with other operational improvements such as signal coordination, or temporary capacity increases such as allowing shoulder use in the peak. Here is a snapshot of the file:
Geo Year ITS Multnomah 2005 0 Multnomah 2035 0 -
Truck and bus vmt (region_truck_bus_vmt.csv): This file contains the region’s proportion of VMT by truck and bus as well as the distribution of that VMT across functional classes (freeway, arterial, other). The file includes one row for bus VMT data and one row for Truck VMT data. It should be noted that it is not necessary to enter values in the PropVmt column for BusVmt as this is calculated using the values in the transportation_supply.csv user input file. The truck VMT proportion (PropVMT column, TruckVMT row) can be obtained from Highway Performance Monitoring System data and local sources or the regional travel demand model if one exists. The proportions of VMT by functional class can be derived from the Federal Highway Cost Allocation Study and data from transit operators. The Federal Highway Cost Allocation Study (Table II-6, 1997 Federal Highway Cost Allocation Study Final Report, Chapter II is used to calculate the average proportion of truck VMT by functional class. Data from transit authorities are used to calculate the proportions of bus VMT by urban area functional class. Here is a snapshot of the file:
Type PropVmt Fwy Art Other BusVmt 0 0.15 0.591854 0.258146 TruckVmt 0.08 0.452028 0.398645 0.149327
-
Light vehicle dvmt (BaseLtVehDvmt): Total light vehicle daily VMT for the base year in thousands of miles. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. Light vehicle daily VMT can be estimated by subtracting truck and bus VMT from total VMT provided in the Highway Performance Monitoring System (HPMS). Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseLtVehDvmt", "VALUE": "27244", "TYPE" : "compound", "UNITS" : "MI/DAY", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Dvmt proportion by functional class (BaseFwyArtProp): The proportions of daily VMT for light vehicles that takes place on freeways and arterials (i.e., the remainder of VMT takes place on lower functional class roads for the base year. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. The proportions of light vehicle daily VMT on freeways and arterials can be derived from the HPMS data. Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseFwyArtProp", "VALUE": "0.77", "TYPE" : "double", "UNITS" : "proportion", "PROHIBIT" : "c('NA', '< 0', '> 1')", "ISELEMENTOF" : "" }
-
Transit revenue adjustment factor (TranRevMiAdjFactor): Factor to convert transit revenue miles (i.e. miles run in service on routes) to total transit vehicle miles operated to account for vehicle miles run while deadheading from depots to route endpoints. It should be defined in model_parameters.json as follows:
{ "NAME" : "TranRevMiAdjFactor", "VALUE": "1.12", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
Package | Module | Outputs | Description |
---|---|---|---|
VELandUse | CalculateBasePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateFuturePlaceTypes | UrbanPop | Total population by place types |
VETransportSupply | CreateBaseAccessibility | FwyLaneMiPC | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population |
VETransportSupply | CreateBaseAccessibility | ArtLaneMiPC | Ratio of urbanized area arterial lane-miles to urbanized area population |
VETransportSupply | CreateBaseAccessibility | TranRevMiPC | Transit revenue miles per capita for the region |
VETransportSupply | CreateBaseAccessibility | BusRevMi | Bus revenue miles for the region |
VETransportSupply | CreateBaseAccessibility | RailRevMi | Rail revenue miles for the region |
VEHouseholdTravel | CalculateTravelDemand | TruckDvmt | Average daily vehicle miles traveled by trucks |
VEHouseholdTravel | CalculateTravelDemand | Dvmt (bzones) | Average daily vehicle miles traveled by place types |
-
LtVehDvmt: Daily vehicle miles travelled by light vehicles in the region
-
BusDvmt: Daily vehicle miles travelled by bus in the region
-
MpgAdjLtVeh: Average fuel efficiency adjustment for light vehicles in the region
-
MpgAdjBus: Average fuel efficiency adjustment for buses in the region
-
MpgAdjTruck: Average fuel efficiency adjustment for heavy trucks in the region
-
MpKwhAdjLtVehEv: Average power efficiency adjustment for electric light vehicles in the region
-
MpKwhAdjLtVehHev: Average power efficiency adjustment for hybrid electric light vehicles in the region
-
MpKwhAdjBus: Average power efficiency adjustment for buses in the region
-
MpKwhAdjTruck: Average power efficiency adjustment for heavy trucks in the region
-
VehHrLtVeh: Total vehicle travel time for light vehicles in the region
-
VehHrBus: Total vehicle travel time for buses in the region
-
VehHrTruck: Total vehicle travel time for heavy trucks in the region
-
AveSpeedLtVeh: Average speed for light vehicles in the region
-
AveSpeedBus: Average speed for buses in the region
-
AveSpeedTruck: Average speed for heavy trucks in the region
-
FfVehHrLtVeh: Average free-flow travel time for light vehicles in the region
-
FfVehHrBus: Average free-flow travel time for buses in the region
-
FfVehHrTruck: Average free-flow travel time for heavy trucks in the region
-
DelayVehHrLtVeh: Total vehicle delay time for light vehicles in the region
-
DelayVehHrBus: Total vehicle delay time for buses in the region
-
DelayVehHrTruck: Total vehicle delay time for heavy trucks in the region
-
MpgAdjHh: Average fuel efficiency adjustment for households in the region
-
MpKwhAdjEvHh: Average power efficiency adjustment for electric vehicles for households in the region
-
MpKwhAdjHevHh: Average power efficiency adjustment for hybrid electric vehicles for households in the region
-
LtVehDvmtFactor: Light vehicle Dvmt factor adjustment factor
Top](#contents) Definitions Inputs/Outputs
This module is similar to CalculateCongestionBase module but uses model estimation of future transportation supply as the basis of calculations.
-
Percent road miles with ITS treatment (azone_its_prop.csv): This file is an estimate of the proportion of road miles that have improvements which reduce incidents through ITS treatments in both the base and future years. Values entered should be between 0 and 1, with 1 indicating that 100% of road miles are treated. The ITS policy measures the effects of incident management supported by ITS. The ITS table is used to inform the congestion model and the travel demand model. The model uses the mean speeds with and without incidents to compute an overall average speed by road type and congestion level providing a simple level of sensitivity to the potential effects of incident management programs on delay and emissions. The ITS treatments are evaluated only on freeways and arterials. The ITS treatments that can be evaluated are those that the analyst considers will reduce non-recurring congestion due to incidents. This policy does not deal with other operational improvements such as signal coordination, or temporary capacity increases such as allowing shoulder use in the peak. Here is a snapshot of the file:
Geo Year ITS Multnomah 2005 0 Multnomah 2035 0 -
Truck and bus vmt (region_truck_bus_vmt.csv): This file contains the region’s proportion of VMT by truck and bus as well as the distribution of that VMT across functional classes (freeway, arterial, other). The file includes one row for bus VMT data and one row for Truck VMT data. It should be noted that it is not necessary to enter values in the PropVmt column for BusVmt as this is calculated using the values in the transportation_supply.csv user input file. The truck VMT proportion (PropVMT column, TruckVMT row) can be obtained from Highway Performance Monitoring System data and local sources or the regional travel demand model if one exists. The proportions of VMT by functional class can be derived from the Federal Highway Cost Allocation Study and data from transit operators. The Federal Highway Cost Allocation Study (Table II-6, 1997 Federal Highway Cost Allocation Study Final Report, Chapter II is used to calculate the average proportion of truck VMT by functional class. Data from transit authorities are used to calculate the proportions of bus VMT by urban area functional class. Here is a snapshot of the file:
Type PropVmt Fwy Art Other BusVmt 0 0.15 0.591854 0.258146 TruckVmt 0.08 0.452028 0.398645 0.149327
-
Light vehicle dvmt (BaseLtVehDvmt): Total light vehicle daily VMT for the base year in thousands of miles. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. Light vehicle daily VMT can be estimated by subtracting truck and bus VMT from total VMT provided in the Highway Performance Monitoring System (HPMS). Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseLtVehDvmt", "VALUE": "27244", "TYPE" : "compound", "UNITS" : "MI/DAY", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Dvmt proportion by functional class (BaseFwyArtProp): The proportions of daily VMT for light vehicles that takes place on freeways and arterials (i.e., the remainder of VMT takes place on lower functional class roads for the base year. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. The proportions of light vehicle daily VMT on freeways and arterials can be derived from the HPMS data. Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseFwyArtProp", "VALUE": "0.77", "TYPE" : "double", "UNITS" : "proportion", "PROHIBIT" : "c('NA', '< 0', '> 1')", "ISELEMENTOF" : "" }
-
Transit revenue adjustment factor (TranRevMiAdjFactor): Factor to convert transit revenue miles (i.e. miles run in service on routes) to total transit vehicle miles operated to account for vehicle miles run while deadheading from depots to route endpoints. It should be defined in model_parameters.json as follows:
{ "NAME" : "TranRevMiAdjFactor", "VALUE": "1.12", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
Package | Module | Outputs | Description |
---|---|---|---|
VELandUse | CalculateBasePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateFuturePlaceTypes | UrbanPop | Total population by place types |
VETransportSupply | CreateFutureAccessibility | FwyLaneMiPCFuture | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | ArtLaneMiPCFuture | Ratio of urbanized area arterial lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | TranRevMiPCFuture | Transit revenue miles per capita for the region calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | BusRevMiFuture | Bus revenue miles for the region calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | RailRevMiFuture | Rail revenue miles for the region calculated using future (estimated) data |
VEHouseholdTravel | CalculateTravelDemandFuture | TruckDvmtFuture | Average daily vehicle miles traveled by trucks estimated using model estimations of future year data |
VEHouseholdTravel | CalculateTravelDemandFuture | DvmtFuture (bzones) | Average daily vehicle miles traveled by place types estimated using model estimations of future year data |
VETransportSupplyUse | CalculateCongestionBase | LtVehDvmtFactor | Light vehicle Dvmt factor adjustment factor |
- LtVehDvmtFuture: Daily vehicle miles travelled by light vehicles in the region calculated using model estimation of future data
- BusDvmtFuture: Daily vehicle miles travelled by bus in the region calculated using model estimation of future data
- MpgAdjLtVehFuture: Average fuel efficiency adjustment for light vehicles in the region calculated using model estimation of future data
- MpgAdjBusFuture: Average fuel efficiency adjustment for buses in the region calculated using model estimation of future data
- MpgAdjTruckFuture: Average fuel efficiency adjustment for heavy trucks in the region calculated using model estimation of future data
- VehHrLtVehFuture: Total vehicle travel time for light vehicles in the region calculated using model estimation of future data
- VehHrBusFuture: Total vehicle travel time for buses in the region calculated using model estimation of future data
- VehHrTruckFuture: Total vehicle travel time for heavy trucks in the region calculated using model estimation of future data
- AveSpeedLtVehFuture: Average speed for light vehicles in the region calculated using model estimation of future data
- AveSpeedBusFuture: Average speed for buses in the region calculated using model estimation of future data
- AveSpeedTruckFuture: Average speed for heavy trucks in the region calculated using model estimation of future data
- FfVehHrLtVehFuture: Average free-flow travel time for light vehicles in the region calculated using model estimation of future data
- FfVehHrBusFuture: Average free-flow travel time for buses in the region calculated using model estimation of future data
- FfVehHrTruckFuture: Average free-flow travel time for heavy trucks in the region calculated using model estimation of future data
- DelayVehHrLtVehFuture: Total vehicle delay time for light vehicles in the region calculated using model estimation of future data
- DelayVehHrBusFuture: Total vehicle delay time for buses in the region calculated using model estimation of future data
- DelayVehHrTruckFuture: Total vehicle delay time for heavy trucks in the region calculated using model estimation of future data
- MpgAdjHhFuture: Average fuel efficiency adjustment for households in the region calculated using model estimation of future data
- LtVehDvmtFactorFuture: Light vehicle Dvmt factor adjustment factor calculated using model estimation of future data
Top Definitions Inputs/Outputs
Induced demand is calculated for changes in roadway supply in the near term as a function of speed, based on potential mode and route shifts to produce changes in VMT and in the longer term to include changes in vehicle ownership, still as a function of speed. This model does not include induced demand as a result of changes in growth that may occur as part of a smart growth scenario because the evidence is limited empirical evidence.
-
Auto and transit trips per capita (region_trips_per_cap.csv): This file contains regional averages for auto and transit trips per day for the base year.
- Auto is the regional average of auto trips per capita, including drive alone and shared ride travel. This data can be derived from the National Household Travel Survey by region or from a local household travel survey or regional travel demand forecasting model.
- Transit is the regional average of transit trips per capita, including walk and drive access to transit. This data can be derived from the National Transit Database where the annual database contains a “service” table that has annual transit trip data for each transit operator or from a local household travel survey or regional travel demand forecasting model.
Here is a snapshot of the files:
Mode Trips Auto 3.2 Transit 0.4 -
Place type adjustments to travel demand (model_place_type_elasticities.csv): This file contains elasticities for four performance metrics:
- VMT – Following the estimate of travel demand that incorporates induced demand, an adjustment is made to travel demand that accounts for changes in growth by the place types that are used in the model to describe urban form. These changes are interpreted as changes in design (intersection street density), accessibility (job accessibility by auto), distance to transit (nearest transit stop), density (population density) and diversity (land use mix). The effect on travel demand is determined as changes in VMT by these urban form categories, as shown in the table below. The elasticities that are shown in the table are multiplied by the D values for each place type. The D values are proportion values for each place type that are relative to the regional average, which is set to 1.0.
- VehicleTrips – The change in the number of vehicle trips is calculated using a set of elasticities from Index 4D Values (2001) that pivots from the current number of vehicle trips per capita based on the scenario’s allocation of growth by place type. The elasticities shown in the table are applied to D values, which are proportional values for each place type that are relative to a regional average for that D value that is set to 1.0. The model reports the additional number of trips caused by the growth assumed in the scenario and not the regional total.
- TransitTrips – The change in the number of transit trips is calculated using a set of elasticities from Index 4D Values (2001) that pivots from the current number of transit trips per capita based on the scenario’s allocation of growth by place type. The elasticities shown in the table are applied to D values, which are proportional values for each place type that are relative to a regional average for that D value that is set to 1.0. The model reports the additional number of trips caused by the growth assumed in the scenario and not the regional total.
- Walking – The elasticities shown in the table are applied to D values, which are proportional values for each place type that are relative to a regional average for that D value that is set to 1.0. The product of the elasticity and D value is applied to the place type growth quantities for the scenario to calculated the percentage increase or decrease in walking for new residents in the region relative to a the current place type distribution.
Here is a snapshot of the file:
Parameters VMT VehicleTrips TransitTrips Walking Density -0.04 -0.043 0.07 0.07 Diversity -0.09 -0.051 0.12 0.15 Design -0.12 -0.031 0.23 0.39 Regional_Accessibility -0.2 -0.036 0 0 Distance_to_Transit -0.05 0 0.29 0.15 -
Place type adjustments to travel demand (model_place_type_relative_values.csv): This file contains the D values, which are proportional values for each of the 13 place types (Bzones) that are relative to a regional average, for each of the five Ds used in VERPAT - design (intersection street density), accessibility (job accessibility by auto), distance to transit (nearest transit stop), density (population density) and diversity (land use mix). Here is a snapshot of the file:
Geo Density Diversity Design Regional_Accessibility Distance_to_Transit Rur 0.5 0.5 0.5 0.5 0.5 Sub_R 0.75 0.75 0.75 0.75 0.75 Sub_E 0.75 0.75 0.75 0.75 0.75 Sub_M 1 1 1 0.75 0.75 Sub_T 1 1 1 1 1 CIC_R 1.2 1.2 1.2 1.2 1 CIC_E 1.2 1.2 1.2 1.2 1 CIC_M 1.2 1.2 1.2 1.2 1 CIC_T 1.2 1.2 1.2 1.2 1.2 UC_R 1.5 1.2 1.5 1.5 1.2 UC_E 1.5 1.2 1.5 1.5 1.2 UC_M 1.5 1.5 1.5 1.5 1.2 UC_T 1.5 1.5 1.5 1.5 1.5
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | PredictIncome | Income | Total annual household (non-qroup & group quarters) income in year 1999 dollars |
VELandUse | CalculateBasePlaceTypes | HhPlaceTypes | A place type as assigned to the households |
VELandUse | CalculateBasePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateBasePlaceTypes | UrbanEmp | Total employees by place types |
VELandUse | CalculateFuturePlaceTypes | HhPlaceTypes | A place type as assigned to the households |
VELandUse | CalculateFuturePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateFuturePlaceTypes | UrbanEmp | Total employees by place types |
VEHouseholdTravel | CalculateTravelDemandFuture | DvmtFuture (households) | Average daily vehicle miles traveled by household estimated using model estimations of future year data |
- DvmtFuture (households): Average daily vehicle miles traveled by household estimated using model estimations of future year data
- DvmtFuture (bzones): Average daily vehicle miles traveled by place types estimated using model estimations of future year data
- DvmtPtAdj: Dvmt adjustment by place types
- Access: Growth in job access
- Equity: Growth in equity by income group
- VehicleTrips: Policy adjusted vehicle trips
- TransitTrips: Policy adjusted transit trips
- Walking: Growth in walking
Top Definitions Inputs/Outputs
This module calculates scenario travel demand. The average daily VMT for each household can be adjusted based on changes in growth patterns by place type, changes in auto operating cost, changes in road lane miles or transit revenue miles for any scenario. There are also a series of policy assumptions that can contribute to changes in VMT: pricing such as VMT charges or parking pricing, ITS strategies for freeways and arterials, and vanpool, telecommuting, ridesharing, and transit pass programs. All of these will contribute to shifts in travel demand for a given scenario.
-
Percentage of employees offered commute options (region_commute_options.csv): This file contains assumptions about the availability and participation in work based travel demand management programs. The policies are ridesharing programs, transit pass programs, telecommuting or alternative work schedule programs, and vanpool programs. For each, the user enters the proportion of workers who participate (the data items with the “Participation” suffix). For one program, the transit subsidy, the user must also enter the subsidy level in dollars for the TransitSubsidyLevel data item. Here is a snapshot of the file:
TDMProgram DataItem DataValue Ridesharing RidesharingParticipation 0.05 TransitSubsidy TransitSubsidyParticipation 0.1 TransitSubsidy TransitSubsidyLevel 1.25 WorkSchedule Schedule980Participation 0.01 WorkSchedule Schedule440Participation 0.01 WorkSchedule Telecommute1.5DaysParticipation 0.01 Vanpooling LowLevelParticipation 0.04 Vanpooling MediumLevelParticipation 0.01 Vanpooling HighLevelParticipation 0.01 -
Bicycling/light vehicles targets (region_light_vehicles.csv): This file contains input data for the non-motorized vehicle model. In VERPAT, non-motorized vehicles are bicycles, and also electric bicycles, segways, and similar vehicles that are small, light-weight and can travel at bicycle speeds or slightly higher. The parameters are as follows:
- TargetProp: non-motorized vehicle ownership rate (average ratio of non-motorized vehicles to driver age population)
- Threshold: single-occupant vehicle (SOV) tour mileage threshold used in the SOV travel proportion model. This is the upper limit for tour lengths that are suitable for reallocation to non-motorized modes.
- PropSuitable: proportion of SOV travel suitable for non-motorized vehicle travel. This variable describes the proportion of SOV tours within the mileage threshold for which non-motorized vehicles might be substituted. This variable takes into account such factors as weather and trip purpose.
The non-motorized vehicle model predicts the ownership and use of non-motorized vehicles (where non-motorized vehicles are bicycles, and also electric bicycles, segways and similar vehicles that are small, light-weight and can travel at bicycle speeds or slightly higher than bicycle speeds). The core concept of the model is that non-motorized vehicle usage will primarily be a substitute for short-distance SOV travel. Therefore, the model estimates the proportion of the household vehicle travel that occurs in short-distance SOV tours. The model determines the maximum potential for household VMT to be diverted to non-motorized vehicles, which is also dependent on the availability of non-motorized vehicles. Note that bike share programs (BSP) serve to increase the availability of non-motorized vehicles and can be taken into account by increasing the TargetProp variable. Use national estimates of non-motorized ownership if regional estimates of non-motorized ownership are not available (unless the region has notably atypical levels of bicycle usage). See Bicycle Ownership in the United States for an analysis of regional differences. Here is a snapshot of the file:
DataItem DataValue TargetProp 0.2 Threshold 2 PropSuitable 0.1 -
Increase in parking cost and supply (marea_parking_growth.csv): This file contains information that allows the effects of policies such as workplace parking charges and "cash-out buy-back" programs to be tested. The input parameters are as follows and should be entered for both the base and future year:
- PropWrkPkg: proportion of employees that park at work
- PropWrkChrgd: proportion of employers that charge for parking
- PropCashOut: proportion of employment parking that is converted from being free to pay under a "cash-out buy-back" type of program
- PrkOthChrgd: proportion of other parking that is not free
- PkgCost: average daily parking cost. This variable is the average daily parking cost for those who incur a fee to park. If the paid parking varies across the region, then the "PkgCost" value should reflect the average of those parking fees, but weighted by the supply – so if most in the Center City, then the average will be heavily weighted toward the price in the Center City.
Here is a snapshot of the file:
Geo Year PropWorkParking PropWorkCharged PropCashOut PropOtherCharged ParkingCost.2000 Multnomah 2005 1 0.1 0 0.05 5 Multnomah 2035 1 0.1 0 0.05 5 -
Travel Demand Management: Ridesharing (model_tdm_ridesharing.csv): The ridesharing Travel Demand Management file contains parameters describing the effectiveness of ridersharing programs by place type. The proportion of employees participating in the ridesharing program is a policy input. This is converted into a proportion of working-age persons by using an assumed labor force participation rate (0.65) to sample working-age persons in households. The ridesharing submodel then computes the anticipated level of VMT reduction resulting from the implementation of ridesharing, based on the place type the household lives in, using the effectiveness values shown in this parameter file. Previous studies have determined that the level of ridesharing participation will be less in the rural and suburban areas, as compared to the more-urban areas. Typically, more people will carpool in the more urbanized areas due to the presence of parking charges, potential difficulties in finding parking, and other disincentives that are typically present in more urbanized areas. Here is a snapshot of the file:
ModelGeo Effectiveness Rur 0 Sub 0.05 CIC 0.1 UC 0.15 -
Travel Demand Management: Transit Fares (model_tdm_transit.csv): The transit fare Travel Demand Management files are parameters for the effectiveness (level of VMT reduction) and fare subsidy values for employer. The subsidized/discounted transit model begins by evaluating the level of participation within the region. Monte Carlo processes are used to identify which households participate in transit pass programs. The proportion of employees participating in this program is a policy input. This is converted into a proportion of working-age persons by using an assumed labor force participation rate (0.65) to sample working-age persons in households. The model then allows the selection of one of four potential subsidy levels (also a policy inputs), which influence the level of VMT reduction based on the level of subsidy applied to the place type. The anticipated level of VMT reduction is then further reduced to account for the proportion of work travel in overall daily travel. Here is a snapshot of the file:
ModelGeo Subsidy0 Subsidy1 Subsidy2 Subsidy3 Subsidy4 Rur 0 0 0 0 0 Sub 0 0.02 0.033 0.079 0.2 CIC 0 0.034 0.073 0.164 0.2 UC 0 0.062 0.129 0.2 0.2 -
Travel Demand Management: Transit Subsidy Levels (model_tdm_transitlevels.csv): This file contains the dollar value match to the subsidy levels used in model_tdm_transit.csv file. Here is a snapshot of the file:
SubsidyLevel SubsidyValue.2000 Subsidy0 0 Subsidy1 0.75 Subsidy2 1.49 Subsidy3 2.98 Subsidy4 5.96 -
Travel Demand Management: Vanpooling (model_tdm_vanpooling.csv): This file contains parameters describing the effectiveness in terms of VMT reductions for vanpooling programs across three levels of employee involvement. The vanpool program submodel operates by evaluating the likely level of participation. Monte Carlo processes are used to identify which households participate in vanpool programs. The proportion of employees participating in this program is a policy input. This is converted into a proportion of working-age persons by using an assumed labor force participation rate (0.65) to sample working-age persons in households. Those employers that would participate in the program are then categorized into three levels of involvement from low to medium to high. The level of involvement reflects the extent to which an employer would actively facilitate and promote vanpooling. For example, a low level of involvement might represent an employer who organizes only a minimal number of vanpools. The high level of involvement could represent an employer who has an extensive vanpooling program to cover a large number of employees. Based on the level of involvement, the reduction in VMT is estimated on the basis of the values in this file. Here is a snapshot of the file:
VanpoolingParticipation VMTReduction Low 0.003 Medium 0.0685 High 0.134 -
Travel Demand Management: Work Schedule (model_tdm_workschedule.csv): This file contains parameters that describe the effectiveness for different participation levels for three different telecommuting or alternative work schedules. The telecommuting or alternative work schedule model first evaluates the likely level of participation throughout the region in terms of telecommuting or alternatively-works schedules. Monte Carlo processes are used to identify which households participate in telecommuting programs. The proportion of employees participating in this program is a policy input. This is converted into a proportion of working-age persons by using an assumed labor force participation rate (0.65) to sample working-age persons in households. The model then determines the type of programs that might be implemented. Three potential alternatives are offered including:
- 4/40 Schedule: 4 days per week with 40 hours per week
- 9/80 Schedule: working 4 days every other week with an average of 80 hours over 2 weeks
- Telecommuting: Workers may work 1 to 2 days a week remotely
Once the option has been identified and the level of participation, the estimated VMT is determined on the basis of the parameters in this file. Here is a snapshot of the file:
WorkSchedulePolicy Participation0 Participation1 Participation2 Participation3 Participation4 Participation5 Schedule980 0 0.0007 0.0021 0.0035 0.007 0.0175 Schedule440 0 0.0015 0.0045 0.007 0.015 0.0375 TelecommuteoneandhalfDays 0 0.0022 0.0066 0.011 0.022 0.055 -
Travel Demand Management: Work Schedule Participation Levels (model_tdm_workschedulelevels.csv): This file describes the proportion of employees participating in the program corresponding to the participation levels used in model_tdm_workschedule.csv file. Here is a snapshot of the file:
ParticipationLevel ParticipationValue Participation0 0 Participation1 0.01 Participation2 0.03 Participation3 0.05 Participation4 0.1 Participation5 0.25
-
% Increase in Auto Operating Cost (AutoCostGrowth): This parameter reflects the proportional increase in auto operating cost. This can be used to test different assumptions for future gas prices or the effects of increased gas taxes. A value of 1.5 multiplies base year operating costs by 1.5 and thus reflects a 50% increase. It should be defined in model_parameters.json as follows:
{ "NAME" : "AutoCostGrowth", "VALUE": "1.5", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Auto Operating Surcharge Per VMT (VmtCharge): It is a cost in cents per mile that would be levied on auto users through the form of a VMT charge. It should be defined in model_parameters.json as follows:
{ "NAME" : "VmtCharge", "VALUE": "0.05", "TYPE" : "compound", "UNITS" : "USD/MI", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Work VMT Proportion (WorkVmtProp): The proportion of household VMT that takes place for commute to work purposes; used to differentiate between travel purposes for use in estimating overall VMT reductions that are targeted at the commute to work. It should be defined in model_parameters.json as follows:
{ "NAME" : "WorkVmtProp", "VALUE": "0.25", "TYPE" : "double", "UNITS" : "proportion", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhId | Unique household ID |
VESimHouseholds | CreateHouseholds | HhSize | Number of persons |
VESimHouseholds | CreateHouseholds | Age0to14 | Persons in 0 to 14 year old age group |
VESimHouseholds | CreateHouseholds | Age15to19 | Persons in 15 to 19 year old age group |
VESimHouseholds | CreateHouseholds | Age20to29 | Persons in 20 to 29 year old age group |
VESimHouseholds | CreateHouseholds | Age30to54 | Persons in 30 to 54 year old age group |
VESimHouseholds | CreateHouseholds | Age55to64 | Persons in 55 to 64 year old age group |
VESimHouseholds | CreateHouseholds | Age65Plus | Persons in 65 or older age group |
VESimHouseholds | PredictIncome | Income | Total annual household (non-qroup & group quarters) income in year 1999 dollars |
VELandUse | CalculateFuturePlaceTypes | HhPlaceTypes | A place type as assigned to the households |
VELandUse | CalculateFuturePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateFuturePlaceTypes | UrbanEmp | Total employees by place types |
VELandUse | CalculateFuturePlaceTypes | UrbanIncome | Total income by place types |
VETransportSupply | CreateFutureAccessibility | FwyLaneMiPCFuture | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | ArtLaneMiPCFuture | Ratio of urbanized area arterial lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | TranRevMiPCFuture | Transit revenue miles per capita for the region calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | BusRevMiFuture | Bus revenue miles for the region calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | RailRevMiFuture | Rail revenue miles for the region calculated using future (estimated) data |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | VehIdFuture | Unique vehicle ID |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | VehiclesFuture | Number of automobiles and light trucks owned or leased by the household |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | NumLtTrkFuture | Number of light trucks (pickup, sport-utility vehicle, and van) owned or leased by household |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | NumAutoFuture | Number of automobiles (i.e. 4-tire passenger vehicles that are not light trucks) owned or leased by household |
VEHouseholdTravel | CalculateTravelDemandFuture | DvmtFuture (vehicles) | Average daily vehicle miles traveled by each vehicle estimated using model estimations of future year data |
VEHouseholdTravel | CalculateTravelDemandFuture | FuelGallonsFuture | Average daily fuel consumption in gallons by each household estimated using model estimations of future year data |
VEHouseholdTravel | CalculateTravelDemandFuture | FuelCo2eFuture | Average daily Co2 equivalent greenhouse gas emissions by each household estimated using model estimations of future year data |
VEHouseholdTravel | CalculateTravelDemandFuture | FutureCostPerMileFuture | Total cost per mile for future year for each household estimated using model estimations of future year data |
VETransportSupplyUse | CalculateCongestionFuture | MpgAdjLtVehFuture | Average fuel efficiency adjustment for light vehicles in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | MpgAdjBusFuture | Average fuel efficiency adjustment for buses in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | MpgAdjTruckFuture | Average fuel efficiency adjustment for heavy trucks in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | VehHrLtVehFuture | Total vehicle travel time for light vehicles in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | VehHrBusFuture | Total vehicle travel time for buses in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | VehHrTruckFuture | Total vehicle travel time for heavy trucks in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | AveSpeedLtVehFuture | Average speed for light vehicles in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | AveSpeedBusFuture | Average speed for buses in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | AveSpeedTruckFuture | Average speed for heavy trucks in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | FfVehHrLtVehFuture | Average free-flow travel time for light vehicles in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | FfVehHrBusFuture | Average free-flow travel time for buses in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | FfVehHrTruckFuture | Average free-flow travel time for heavy trucks in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | DelayVehHrLtVehFuture | Total vehicle delay time for light vehicles in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | DelayVehHrBusFuture | Total vehicle delay time for buses in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | DelayVehHrTruckFuture | Total vehicle delay time for heavy trucks in the region calculated using model estimation of future data |
VETransportSupplyUse | CalculateCongestionFuture | MpgAdjHhFuture | Average fuel efficiency adjustment for households in the region calculated using model estimation of future data |
VEHouseholdTravel | CalculateInducedDemand | DvmtFuture (households) | Average daily vehicle miles traveled by household estimated using model estimations of future year data |
VEHouseholdTravel | CalculateInducedDemand | DvmtFuture (bzones) | Average daily vehicle miles traveled by place types estimated using model estimations of future year data |
VEHouseholdTravel | CalculateInducedDemand | Access | Growth in job access |
VEHouseholdTravel | CalculateInducedDemand | VehicleTrips | Policy adjusted vehicle trips |
VEHouseholdTravel | CalculateInducedDemand | TransitTrips | Policy adjusted transit trips |
VEHouseholdTravel | CalculateInducedDemand | Walking | Growth in walking |
- DvmtPolicy (bzones): Average daily vehicle miles traveled by place types after policy adjustments
- DvmtPolicy (households): Average daily vehicle miles traveled by households after policy adjustments
- DvmtPolicy (vehicles): Average daily vehicle miles traveled by vehicles after policy adjustments
- LtVehiclesPolicy: Number of light vehicles by households after policy adjustments
- LtVehAdjFactorPolicy: Light vehicles adjustment factor for households
- TdmLtVehAdjFactorPolicy: TDM Light vehicles adjustment factor for households
- TdmAdjFactorPolicy: TDM adjustment factor for households
- LtVehDvmtPolicy: Average daily vehicle miles traveled by light vehicles by households after policy adjustments
- FutureCostPerMilePolicy: Total cost per mile for future year for each household estimated after making policy adjustments
- DailyParkingCostPolicy: Daily parking cost calculated after making policy adjustments
- CashOutIncAdjPolicy: Adjustment to income after cash out
- IncomePolicy: Income of the households after applying policy
- CostsPolicy: Various policy related energy costs
Top Definitions Inputs/Outputs
This module is similar to CalculateCongestionBase module but uses model estimation of future transportation supply adjusted to policies as the basis of calculations.
-
Percent road miles with ITS treatment (azone_its_prop.csv): This file is an estimate of the proportion of road miles that have improvements which reduce incidents through ITS treatments in both the base and future years. Values entered should be between 0 and 1, with 1 indicating that 100% of road miles are treated. The ITS policy measures the effects of incident management supported by ITS. The ITS table is used to inform the congestion model and the travel demand model. The model uses the mean speeds with and without incidents to compute an overall average speed by road type and congestion level providing a simple level of sensitivity to the potential effects of incident management programs on delay and emissions. The ITS treatments are evaluated only on freeways and arterials. The ITS treatments that can be evaluated are those that the analyst considers will reduce non-recurring congestion due to incidents. This policy does not deal with other operational improvements such as signal coordination, or temporary capacity increases such as allowing shoulder use in the peak. Here is a snapshot of the file:
Geo Year ITS Multnomah 2005 0 Multnomah 2035 0 -
Truck and bus vmt (region_truck_bus_vmt.csv): This file contains the region’s proportion of VMT by truck and bus as well as the distribution of that VMT across functional classes (freeway, arterial, other). The file includes one row for bus VMT data and one row for Truck VMT data. It should be noted that it is not necessary to enter values in the PropVmt column for BusVmt as this is calculated using the values in the transportation_supply.csv user input file. The truck VMT proportion (PropVMT column, TruckVMT row) can be obtained from Highway Performance Monitoring System data and local sources or the regional travel demand model if one exists. The proportions of VMT by functional class can be derived from the Federal Highway Cost Allocation Study and data from transit operators. The Federal Highway Cost Allocation Study (Table II-6, 1997 Federal Highway Cost Allocation Study Final Report, Chapter II is used to calculate the average proportion of truck VMT by functional class. Data from transit authorities are used to calculate the proportions of bus VMT by urban area functional class. Here is a snapshot of the file:
Type PropVmt Fwy Art Other BusVmt 0 0.15 0.591854 0.258146 TruckVmt 0.08 0.452028 0.398645 0.149327
-
Light vehicle dvmt (BaseLtVehDvmt): Total light vehicle daily VMT for the base year in thousands of miles. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. Light vehicle daily VMT can be estimated by subtracting truck and bus VMT from total VMT provided in the Highway Performance Monitoring System (HPMS). Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseLtVehDvmt", "VALUE": "27244", "TYPE" : "compound", "UNITS" : "MI/DAY", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
-
Dvmt proportion by functional class (BaseFwyArtProp): The proportions of daily VMT for light vehicles that takes place on freeways and arterials (i.e., the remainder of VMT takes place on lower functional class roads for the base year. This data can be derived from a combination of Highway Performance Monitoring System data, Federal Highway Cost Allocation Study data, and regional data. The proportions of light vehicle daily VMT on freeways and arterials can be derived from the HPMS data. Regional travel demand model outputs can also be used to derive these data. It should be defined in model_parameters.json as follows:
{ "NAME" : "BaseFwyArtProp", "VALUE": "0.77", "TYPE" : "double", "UNITS" : "proportion", "PROHIBIT" : "c('NA', '< 0', '> 1')", "ISELEMENTOF" : "" }
-
Transit revenue adjustment factor (TranRevMiAdjFactor): Factor to convert transit revenue miles (i.e. miles run in service on routes) to total transit vehicle miles operated to account for vehicle miles run while deadheading from depots to route endpoints. It should be defined in model_parameters.json as follows:
{ "NAME" : "TranRevMiAdjFactor", "VALUE": "1.12", "TYPE" : "double", "UNITS" : "multiplier", "PROHIBIT" : "c('NA', '< 0')", "ISELEMENTOF" : "" }
Package | Module | Outputs | Description |
---|---|---|---|
VELandUse | CalculateBasePlaceTypes | UrbanPop | Total population by place types |
VELandUse | CalculateFuturePlaceTypes | UrbanPop | Total population by place types |
VETransportSupply | CreateFutureAccessibility | FwyLaneMiPCFuture | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | ArtLaneMiPCFuture | Ratio of urbanized area arterial lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | TranRevMiPCFuture | Transit revenue miles per capita for the region calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | BusRevMiFuture | Bus revenue miles for the region calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | RailRevMiFuture | Rail revenue miles for the region calculated using future (estimated) data |
VEHouseholdTravel | CalculateTravelDemandFuture | TruckDvmtFuture | Average daily vehicle miles traveled by trucks estimated using model estimations of future year data |
VEHouseholdTravel | CalculatePolicyVmt | DvmtPolicy (bzones) | Average daily vehicle miles traveled by place types estimated using model estimations of future year data |
VETransportSupplyUse | CalculateCongestionFuture | LtVehDvmtFactorFuture | Light vehicle Dvmt factor adjustment factor |
- LtVehDvmtPolicy: Daily vehicle miles travelled by light vehicles in the region calculated using model estimation of future data after adjusting for policies
- BusDvmtPolicy: Daily vehicle miles travelled by bus in the region calculated using model estimation of future data after adjusting for policies
- MpgAdjLtVehPolicy: Average fuel efficiency adjustment for light vehicles in the region calculated using model estimation of future data after adjusting for policies
- MpgAdjBusPolicy: Average fuel efficiency adjustment for buses in the region calculated using model estimation of future data after adjusting for policies
- MpgAdjTruckPolicy: Average fuel efficiency adjustment for heavy trucks in the region calculated using model estimation of future data after adjusting for policies
- VehHrLtVehPolicy: Total vehicle travel time for light vehicles in the region calculated using model estimation of future data after adjusting for policies
- VehHrBusPolicy: Total vehicle travel time for buses in the region calculated using model estimation of future data after adjusting for policies
- VehHrTruckPolicy: Total vehicle travel time for heavy trucks in the region calculated using model estimation of future data after adjusting for policies
- AveSpeedLtVehPolicy: Average speed for light vehicles in the region calculated using model estimation of future data after adjusting for policies
- AveSpeedBusPolicy: Average speed for buses in the region calculated using model estimation of future data after adjusting for policies
- AveSpeedTruckPolicy: Average speed for heavy trucks in the region calculated using model estimation of future data after adjusting for policies
- FfVehHrLtVehPolicy: Average free-flow travel time for light vehicles in the region calculated using model estimation of future data after adjusting for policies
- FfVehHrBusPolicy: Average free-flow travel time for buses in the region calculated using model estimation of future data after adjusting for policies
- FfVehHrTruckPolicy: Average free-flow travel time for heavy trucks in the region calculated using model estimation of future data after adjusting for policies
- DelayVehHrLtVehPolicy: Total vehicle delay time for light vehicles in the region calculated using model estimation of future data after adjusting for policies
- DelayVehHrBusPolicy: Total vehicle delay time for buses in the region calculated using model estimation of future data after adjusting for policies
- DelayVehHrTruckPolicy: Total vehicle delay time for heavy trucks in the region calculated using model estimation of future data after adjusting for policies
- MpgAdjHhPolicy: Average fuel efficiency adjustment for households in the region calculated using model estimation of future data after adjusting for policies
- LtVehDvmtFactorPolicy: Light vehicle Dvmt factor adjustment factor calculated using model estimation of future data after adjusting for policies
Top Definitions Inputs/Outputs
This module calculates performance metrics that are designed to address a variety of impacts that are helpful for decision-making. Following table summarizes various performance measures produced by this modules, details of which is discussed in VEReports.
Performance Group | Performance Metric | Units | Temporal Resolution |
---|---|---|---|
Direct Travel Impacts | Daily Vehicle Miles Traveled | Miles | Day |
Direct Travel Impacts | Daily Vehicle Trips | Trips | Day |
Direct Travel Impacts | Daily Transit Trips | Trips | Day |
Direct Travel Impacts | Average Travel Speeds by Vehicle Type | MPH | Day |
Direct Travel Impacts | Vehicle Hours of Travel Delay | Hours | Day |
Environment and Energy Impacts | Fuel Consumption | Gallons | Day |
Environment and Energy Impacts | Greenhouse Gas Emissions | Metric Tons | Day |
Financial and Economic Impacts | Regional Highway Infrastructure Costs | Dollars | Year |
Financial and Economic Impacts | Regional Transit Infrastructure Costs | Dollars | Year |
Financial and Economic Impacts | Regional Transit Operating Costs | Dollars | Year |
Financial and Economic Impacts | Annual Traveler Cost (Fuel + Charges) | Dollars | Year |
Location Impacts | Regional Accessibility | Percent Change From Base | - |
Community Impacts | Accident Rates | Count | Year |
Community Impacts | Walking Percentage Increase | Percent Change From Base | - |
Community Impacts | Job Accessibility by Income Group | Percent Change From Base | - |
-
Transportation Costs (model_transportation_costs.csv): This file contains unit cost rates for transportation infrastructure investments and operating costs and transit fare revenue. The parameters are used in the calculations of the transportation costs performance metrics. The source for transit capital, operating costs, and fare revenue is the NTD, and in particular the National Transit Profile which is available on the NTDB website. Costs are available in a variety of index formats, e.g. cost per revenue mile or hour; cost per passenger trip is used in VERPAT. The source for highway infrastructure costs is FHWA’s Highway Economic Requirements System model, or HERS. Information was obtained from Chapter 6 of the 2005 Technical Report for all US states (FHWA, 2005). Table 8-1 in HERS provides unit costs (per lane mile) for both Rural and Urban highway systems, and distinguishes among three functional classes: interstates, freeways and expressways; other principal arterials; and minor arterials and collectors. Costs estimates are provided for the following improvements:
- Reconstruction and widening
- Reconstruct pavement
- Resurface and widen lanes
- Resurface pavement
- Improve shoulders
Additional choices are offered to distinguish between adding a lane at "normal" vs. "high cost", and also for pavement realignment, also under normal vs. high cost conditions. For practical reasons, it was decided to use only "new construction" (which also includes adding lanes) costs as the basis for the cost estimates, and to ignore the categories of reconstruction, resurfacing, and realignment. These construction costs include right of way, construction, and a "small" allowance for bridges and support facilities. The infrastructure costs focus only on the "urban" system, not rural, which also makes it possible to differentiate by three size classes: Small Urban, Small Urbanized, and Large Urbanized. The numbers from HERS are in 2002 dollars; FHWA advises escalation to current dollars using its NHCCI, which is available online at http://www.fhwa.dot.gov/policyinformation/nhcci.cfm); the report in VERPAT escalates uses this Index to escalate to 2010 values. The parameter values in this file are average values per lane mile, simplifying the calculations of highway costs to just differentiate investments in freeway vs. arterial functional class roads. Here is a snapshot of the file:
SupplyClass CapCosts.2000 OpCosts.2000 Fare.2000 Freeway 17 0 0 Arterial 7 0 0 Bus 0.71 3.4 0.91 Rail 5.11 4.87 2.19 -
Accident Rates (model_accident_rates.csv): Road safety impacts are calculated by factoring the amount of VMT. The following national average rates, from the Fatality Analysis Reporting System General Estimates System (2009) by US Department of Transportation, are applied to calculate the number of fatal and injury accidents and the value of property damage:
- Fatal: 1.14 per 100 Million Miles Traveled
- Injury: 51.35 per 100 Million Miles Traveled
- Property damage: 133.95 per 100 Million Miles Traveled
Here is a snapshot of the file:
Accident Rate Fatal 1.14 Injury 51.35 Property 133.95
Package | Module | Outputs | Description |
---|---|---|---|
VESimHouseholds | CreateHouseholds | HhId | Unique household ID |
VELandUse | CalculateFuturePlaceTypes | HhPlaceTypes | A place type as assigned to the households |
VELandUse | CalculateFuturePlaceTypes | UrbanPop | Total population by place types |
VETransportSupply | CreateFutureAccessibility | FwyLaneMiPCFuture | Ratio of urbanized area freeway and expressway lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | ArtLaneMiPCFuture | Ratio of urbanized area arterial lane-miles to urbanized area population calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | TranRevMiPCFuture | Transit revenue miles per capita for the region calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | BusRevMiFuture | Bus revenue miles for the region calculated using future (estimated) data |
VETransportSupply | CreateFutureAccessibility | RailRevMiFuture | Rail revenue miles for the region calculated using future (estimated) data |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | VehIdFuture | Unique vehicle ID |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | TypeFuture | Vehicle body type: Auto = automobile, LtTrk = light trucks (i.e. pickup, SUV, Van) |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | MileageFuture | Mileage of vehicles (automobiles and light truck) |
VEHouseholdVehicles | AssignVehicleFeaturesFuture | VehiclesFuture | Number of automobiles and light trucks owned or leased by the household |
VEHouseholdTravel | CalculateTravelDemandFuture | TruckDvmtFuture | Average daily vehicle miles traveled by trucks estimated using model estimations of future year data |
VEHouseholdTravel | CalculateTravelDemandFuture | FuelGallonsFuture | Average daily fuel consumption in gallons by each household estimated using model estimations of future year data |
VEHouseholdTravel | CalculateTravelDemandFuture | FuelCo2eFuture | Average daily Co2 equivalent greenhouse gas emissions by each household estimated using model estimations of future year data |
VEHouseholdTravel | CalculateInducedDemand | TransitTrips | Policy adjusted transit trips |
VEHouseholdTravel | CalculatePolicyVmt | DvmtPolicy (bzones) | Average daily vehicle miles traveled by place types after policy adjustments |
VEHouseholdTravel | CalculatePolicyVmt | DvmtPolicy (households) | Average daily vehicle miles traveled by households after policy adjustments |
VEHouseholdTravel | CalculatePolicyVmt | DvmtPolicy (vehicles) | Average daily vehicle miles traveled by vehicles after policy adjustments |
VEHouseholdTravel | CalculatePolicyVmt | LtVehDvmtPolicy | Average daily vehicle miles traveled by light vehicles by households after policy adjustments |
VEHouseholdTravel | CalculatePolicyVmt | DailyParkingCostPolicy | Daily parking cost calculated after making policy adjustments |
VETransportSupplyUse | CalculateCongestionPolicy | LtVehDvmtPolicy | Daily vehicle miles travelled by light vehicles in the region calculated using model estimation of future data after adjusting for policies |
VETransportSupplyUse | CalculateCongestionPolicy | BusDvmtPolicy | Daily vehicle miles travelled by bus in the region calculated using model estimation of future data after adjusting for policies |
VETransportSupplyUse | CalculateCongestionPolicy | MpgAdjLtVehPolicy | Average fuel efficiency adjustment for light vehicles in the region calculated using model estimation of future data after adjusting for policies |
VETransportSupplyUse | CalculateCongestionPolicy | MpgAdjBusPolicy | Average fuel efficiency adjustment for buses in the region calculated using model estimation of future data after adjusting for policies |
VETransportSupplyUse | CalculateCongestionPolicy | MpgAdjTruckPolicy | Average fuel efficiency adjustment for heavy trucks in the region calculated using model estimation of future data after adjusting for policies |
VETransportSupplyUse | CalculateCongestionPolicy | MpgAdjHhPolicy | Average fuel efficiency adjustment for households in the region calculated using model estimation of future data after adjusting for policies |
- EmissionsMetric: The amount of greenhouse gas emissions per day by place-types
- FuelMetric: The amount of fuel consumed per day by place-types
- CostsMetric: The annual traveler cost (fuel + charges)
- FuelGallonsMetric: Average daily fuel consumption in gallons after policy
- FuelCo2eMetric: Average daily Co2 equivalent greenhouse gas emissions after policy
- FutureCostPerMileMetric: Total fuel cost per mile after policy
- TotalCostMetric: Total fuel cost after policy
- RailPowerMetric: Annual power consumption by rail
- TruckFuelMetric: Annual truck fuel consumption
- BusFuelMetric: Annual bus fuel consumption
- TruckCo2eMetric: Annual greenhouse gas emissions by truck
- BusCo2eMetric: Annual greenhouse gas emissions by bus
- RailCo2eMetric: Annual greenhouse gas emissions by rail
- HighwayCostMetric: Regional highway infrastructure costs
- TransitCapCostMetric: Regional transit infrastructure costs
- TransitOpCostMetric: Regional transit operating costs
- TransitRevenueMetric: Annual fare revenue
- FatalIncidentMetric: Number of fatal incidents
- InjuryIncidentMetric: Number of incidents with injuries
- PropertyDamageMetric: Amount of incidents with property damage
- TruckConsumptionMetric: Annual truck fuel consumption by fuel type
- BusConsumptionMetric: Annual bus fuel consumption by fuel type
Top Definitions Inputs/Outputs
- Getting Started
- VisionEval Models
- VERPAT Tutorial
- VERSPM Tutorial
- VE-RSPM Training
- Developer Orientation
- Goals and Objectives
- Working Together
- Automated Testing
- Contribution Review Criteria
- Modules and Packages
- Development Roadmap
- Documentation Plan
- Multiple Scenarios