-
Notifications
You must be signed in to change notification settings - Fork 1
/
agents.py
624 lines (503 loc) · 22 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
"""Implement Agents and Environments (Chapters 1-2).
The class hierarchies are as follows:
Thing ## A physical object that can exist in an environment
Agent
Wumpus
Dirt
Wall
...
Environment ## An environment holds objects, runs simulations
XYEnvironment
VacuumEnvironment
WumpusEnvironment
An agent program is a callable instance, taking percepts and choosing actions
SimpleReflexAgentProgram
...
EnvGUI ## A window with a graphical representation of the Environment
EnvToolbar ## contains buttons for controlling EnvGUI
EnvCanvas ## Canvas to display the environment of an EnvGUI
"""
# TO DO:
# Implement grabbing correctly.
# When an object is grabbed, does it still have a location?
# What if it is released?
# What if the grabbed or the grabber is deleted?
# What if the grabber moves?
#
# Speed control in GUI does not have any effect -- fix it.
from utils import *
import random, copy
#______________________________________________________________________________
class Thing(object):
"""This represents any physical object that can appear in an Environment.
You subclass Thing to get the things you want. Each thing can have a
.__name__ slot (used for output only)."""
def __repr__(self):
return '<%s>' % getattr(self, '__name__', self.__class__.__name__)
def is_alive(self):
"Things that are 'alive' should return true."
return hasattr(self, 'alive') and self.alive
def show_state(self):
"Display the agent's internal state. Subclasses should override."
print "I don't know how to show_state."
def display(self, canvas, x, y, width, height):
# Do we need this?
"Display an image of this Thing on the canvas."
pass
class Agent(Thing):
"""An Agent is a subclass of Thing with one required slot,
.program, which should hold a function that takes one argument, the
percept, and returns an action. (What counts as a percept or action
will depend on the specific environment in which the agent exists.)
Note that 'program' is a slot, not a method. If it were a method,
then the program could 'cheat' and look at aspects of the agent.
It's not supposed to do that: the program can only look at the
percepts. An agent program that needs a model of the world (and of
the agent itself) will have to build and maintain its own model.
There is an optional slot, .performance, which is a number giving
the performance measure of the agent in its environment."""
def __init__(self, program=None):
self.alive = True
self.bump = False
if program is None:
def program(percept):
return raw_input('Percept=%s; action? ' % percept)
assert callable(program)
self.program = program
def can_grab(self, thing):
"""Returns True if this agent can grab this thing.
Override for appropriate subclasses of Agent and Thing."""
return False
def TraceAgent(agent):
"""Wrap the agent's program to print its input and output. This will let
you see what the agent is doing in the environment."""
old_program = agent.program
def new_program(percept):
action = old_program(percept)
print '%s perceives %s and does %s' % (agent, percept, action)
return action
agent.program = new_program
return agent
#______________________________________________________________________________
def TableDrivenAgentProgram(table):
"""This agent selects an action based on the percept sequence.
It is practical only for tiny domains.
To customize it, provide as table a dictionary of all
{percept_sequence:action} pairs. [Fig. 2.7]"""
percepts = []
def program(percept):
percepts.append(percept)
action = table.get(tuple(percepts))
return action
return program
def RandomAgentProgram(actions):
"An agent that chooses an action at random, ignoring all percepts."
return lambda percept: random.choice(actions)
#______________________________________________________________________________
def SimpleReflexAgentProgram(rules, interpret_input):
"This agent takes action based solely on the percept. [Fig. 2.10]"
def program(percept):
state = interpret_input(percept)
rule = rule_match(state, rules)
action = rule.action
return action
return program
def ModelBasedReflexAgentProgram(rules, update_state):
"This agent takes action based on the percept and state. [Fig. 2.12]"
def program(percept):
program.state = update_state(program.state, program.action, percept)
rule = rule_match(program.state, rules)
action = rule.action
return action
program.state = program.action = None
return program
def rule_match(state, rules):
"Find the first rule that matches state."
for rule in rules:
if rule.matches(state):
return rule
#______________________________________________________________________________
loc_A, loc_B = (0, 0), (1, 0) # The two locations for the Vacuum world
def RandomVacuumAgent():
"Randomly choose one of the actions from the vacuum environment."
return Agent(RandomAgentProgram(['Right', 'Left', 'Suck', 'NoOp']))
def TableDrivenVacuumAgent():
"[Fig. 2.3]"
table = {((loc_A, 'Clean'),): 'Right',
((loc_A, 'Dirty'),): 'Suck',
((loc_B, 'Clean'),): 'Left',
((loc_B, 'Dirty'),): 'Suck',
((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
}
return Agent(TableDrivenAgentProgram(table))
def ReflexVacuumAgent():
"A reflex agent for the two-state vacuum environment. [Fig. 2.8]"
def program((location, status)):
if status == 'Dirty': return 'Suck'
elif location == loc_A: return 'Right'
elif location == loc_B: return 'Left'
return Agent(program)
def ModelBasedVacuumAgent():
"An agent that keeps track of what locations are clean or dirty."
model = {loc_A: None, loc_B: None}
def program((location, status)):
"Same as ReflexVacuumAgent, except if everything is clean, do NoOp."
model[location] = status ## Update the model here
if model[loc_A] == model[loc_B] == 'Clean': return 'NoOp'
elif status == 'Dirty': return 'Suck'
elif location == loc_A: return 'Right'
elif location == loc_B: return 'Left'
return Agent(program)
#______________________________________________________________________________
class Environment(object):
"""Abstract class representing an Environment. 'Real' Environment classes
inherit from this. Your Environment will typically need to implement:
percept: Define the percept that an agent sees.
execute_action: Define the effects of executing an action.
Also update the agent.performance slot.
The environment keeps a list of .things and .agents (which is a subset
of .things). Each agent has a .performance slot, initialized to 0.
Each thing has a .location slot, even though some environments may not
need this."""
def __init__(self):
self.things = []
self.agents = []
def thing_classes(self):
return [] ## List of classes that can go into environment
def percept(self, agent):
"Return the percept that the agent sees at this point. (Implement this.)"
abstract
def execute_action(self, agent, action):
"Change the world to reflect this action. (Implement this.)"
abstract
def default_location(self, thing):
"Default location to place a new thing with unspecified location."
return None
def exogenous_change(self):
"If there is spontaneous change in the world, override this."
pass
def is_done(self):
"By default, we're done when we can't find a live agent."
return not any(agent.is_alive() for agent in self.agents)
def step(self):
"""Run the environment for one time step. If the
actions and exogenous changes are independent, this method will
do. If there are interactions between them, you'll need to
override this method."""
if not self.is_done():
actions = [agent.program(self.percept(agent))
for agent in self.agents]
for (agent, action) in zip(self.agents, actions):
self.execute_action(agent, action)
self.exogenous_change()
def run(self, steps=1000):
"Run the Environment for given number of time steps."
for step in range(steps):
if self.is_done(): return
self.step()
def list_things_at(self, location, tclass=Thing):
"Return all things exactly at a given location."
return [thing for thing in self.things
if thing.location == location and isinstance(thing, tclass)]
def some_things_at(self, location, tclass=Thing):
"""Return true if at least one of the things at location
is an instance of class tclass (or a subclass)."""
return self.list_things_at(location, tclass) != []
def add_thing(self, thing, location=None):
"""Add a thing to the environment, setting its location. For
convenience, if thing is an agent program we make a new agent
for it. (Shouldn't need to override this."""
if not isinstance(thing, Thing):
thing = Agent(thing)
assert thing not in self.things, "Don't add the same thing twice"
thing.location = location or self.default_location(thing)
self.things.append(thing)
if isinstance(thing, Agent):
thing.performance = 0
self.agents.append(thing)
def delete_thing(self, thing):
"""Remove a thing from the environment."""
try:
self.things.remove(thing)
except ValueError, e:
print e
print " in Environment delete_thing"
print " Thing to be removed: %s at %s" % (thing, thing.location)
print " from list: %s" % [(thing, thing.location)
for thing in self.things]
if thing in self.agents:
self.agents.remove(thing)
class XYEnvironment(Environment):
"""This class is for environments on a 2D plane, with locations
labelled by (x, y) points, either discrete or continuous.
Agents perceive things within a radius. Each agent in the
environment has a .location slot which should be a location such
as (0, 1), and a .holding slot, which should be a list of things
that are held."""
def __init__(self, width=10, height=10):
super(XYEnvironment, self).__init__()
update(self, width=width, height=height, observers=[])
def things_near(self, location, radius=None):
"Return all things within radius of location."
if radius is None: radius = self.perceptible_distance
radius2 = radius * radius
return [thing for thing in self.things
if distance2(location, thing.location) <= radius2]
perceptible_distance = 1
def percept(self, agent):
"By default, agent perceives things within a default radius."
return [self.thing_percept(thing, agent)
for thing in self.things_near(agent.location)]
def execute_action(self, agent, action):
agent.bump = False
if action == 'TurnRight':
agent.heading = self.turn_heading(agent.heading, -1)
elif action == 'TurnLeft':
agent.heading = self.turn_heading(agent.heading, +1)
elif action == 'Forward':
self.move_to(agent, vector_add(agent.heading, agent.location))
# elif action == 'Grab':
# things = [thing for thing in self.list_things_at(agent.location)
# if agent.can_grab(thing)]
# if things:
# agent.holding.append(things[0])
elif action == 'Release':
if agent.holding:
agent.holding.pop()
def thing_percept(self, thing, agent): #??? Should go to thing?
"Return the percept for this thing."
return thing.__class__.__name__
def default_location(self, thing):
return (random.choice(self.width), random.choice(self.height))
def move_to(self, thing, destination):
"Move a thing to a new location."
thing.bump = self.some_things_at(destination, Obstacle)
if not thing.bump:
thing.location = destination
for o in self.observers:
o.thing_moved(thing)
def add_thing(self, thing, location=(1, 1)):
super(XYEnvironment, self).add_thing(thing, location)
thing.holding = []
thing.held = None
for obs in self.observers:
obs.thing_added(thing)
def delete_thing(self, thing):
super(XYEnvironment, self).delete_thing(thing)
# Any more to do? Thing holding anything or being held?
for obs in self.observers:
obs.thing_deleted(thing)
def add_walls(self):
"Put walls around the entire perimeter of the grid."
for x in range(self.width):
self.add_thing(Wall(), (x, 0))
self.add_thing(Wall(), (x, self.height-1))
for y in range(self.height):
self.add_thing(Wall(), (0, y))
self.add_thing(Wall(), (self.width-1, y))
def add_observer(self, observer):
"""Adds an observer to the list of observers.
An observer is typically an EnvGUI.
Each observer is notified of changes in move_to and add_thing,
by calling the observer's methods thing_moved(thing)
and thing_added(thing, loc)."""
self.observers.append(observer)
def turn_heading(self, heading, inc):
"Return the heading to the left (inc=+1) or right (inc=-1) of heading."
return turn_heading(heading, inc)
class Obstacle(Thing):
"""Something that can cause a bump, preventing an agent from
moving into the same square it's in."""
pass
class Wall(Obstacle):
pass
#______________________________________________________________________________
## Vacuum environment
class Dirt(Thing):
pass
class VacuumEnvironment(XYEnvironment):
"""The environment of [Ex. 2.12]. Agent perceives dirty or clean,
and bump (into obstacle) or not; 2D discrete world of unknown size;
performance measure is 100 for each dirt cleaned, and -1 for
each turn taken."""
def __init__(self, width=10, height=10):
super(VacuumEnvironment, self).__init__(width, height)
self.add_walls()
def thing_classes(self):
return [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"""The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None').
Unlike the TrivialVacuumEnvironment, location is NOT perceived."""
status = if_(self.some_things_at(agent.location, Dirt),
'Dirty', 'Clean')
bump = if_(agent.bump, 'Bump', 'None')
return (status, bump)
def execute_action(self, agent, action):
if action == 'Suck':
dirt_list = self.list_things_at(agent.location, Dirt)
if dirt_list != []:
dirt = dirt_list[0]
agent.performance += 100
self.delete_thing(dirt)
else:
super(VacuumEnvironment, self).execute_action(agent, action)
if action != 'NoOp':
agent.performance -= 1
class TrivialVacuumEnvironment(Environment):
"""This environment has two locations, A and B. Each can be Dirty
or Clean. The agent perceives its location and the location's
status. This serves as an example of how to implement a simple
Environment."""
def __init__(self):
super(TrivialVacuumEnvironment, self).__init__()
self.status = {loc_A: random.choice(['Clean', 'Dirty']),
loc_B: random.choice(['Clean', 'Dirty'])}
def thing_classes(self):
return [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"Returns the agent's location, and the location status (Dirty/Clean)."
return (agent.location, self.status[agent.location])
def execute_action(self, agent, action):
"""Change agent's location and/or location's status; track performance.
Score 10 for each dirt cleaned; -1 for each move."""
if action == 'Right':
agent.location = loc_B
agent.performance -= 1
elif action == 'Left':
agent.location = loc_A
agent.performance -= 1
elif action == 'Suck':
if self.status[agent.location] == 'Dirty':
agent.performance += 10
self.status[agent.location] = 'Clean'
def default_location(self, thing):
"Agents start in either location at random."
return random.choice([loc_A, loc_B])
#______________________________________________________________________________
## The Wumpus World
class Gold(Thing): pass
class Pit(Thing): pass
class Arrow(Thing): pass
class Wumpus(Agent): pass
class Explorer(Agent): pass
class WumpusEnvironment(XYEnvironment):
def __init__(self, width=10, height=10):
super(WumpusEnvironment, self).__init__(width, height)
self.add_walls()
def thing_classes(self):
return [Wall, Gold, Pit, Arrow, Wumpus, Explorer]
## Needs a lot of work ...
#______________________________________________________________________________
def compare_agents(EnvFactory, AgentFactories, n=10, steps=1000):
"""See how well each of several agents do in n instances of an environment.
Pass in a factory (constructor) for environments, and several for agents.
Create n instances of the environment, and run each agent in copies of
each one for steps. Return a list of (agent, average-score) tuples."""
envs = [EnvFactory() for i in range(n)]
return [(A, test_agent(A, steps, copy.deepcopy(envs)))
for A in AgentFactories]
def test_agent(AgentFactory, steps, envs):
"Return the mean score of running an agent in each of the envs, for steps"
def score(env):
agent = AgentFactory()
env.add_thing(agent)
env.run(steps)
return agent.performance
return mean(map(score, envs))
#_________________________________________________________________________
__doc__ += """
>>> a = ReflexVacuumAgent()
>>> a.program((loc_A, 'Clean'))
'Right'
>>> a.program((loc_B, 'Clean'))
'Left'
>>> a.program((loc_A, 'Dirty'))
'Suck'
>>> a.program((loc_A, 'Dirty'))
'Suck'
>>> e = TrivialVacuumEnvironment()
>>> e.add_thing(ModelBasedVacuumAgent())
>>> e.run(5)
## Environments, and some agents, are randomized, so the best we can
## give is a range of expected scores. If this test fails, it does
## not necessarily mean something is wrong.
>>> envs = [TrivialVacuumEnvironment() for i in range(100)]
>>> def testv(A): return test_agent(A, 4, copy.deepcopy(envs))
>>> 7 < testv(ModelBasedVacuumAgent) < 11
True
>>> 5 < testv(ReflexVacuumAgent) < 9
True
>>> 2 < testv(TableDrivenVacuumAgent) < 6
True
>>> 0.5 < testv(RandomVacuumAgent) < 3
True
"""
#______________________________________________________________________________
# GUI - Graphical User Interface for Environments
# If you do not have Tkinter installed, either get a new installation of Python
# (Tkinter is standard in all new releases), or delete the rest of this file
# and muddle through without a GUI.
import Tkinter as tk
class EnvGUI(tk.Tk, object):
def __init__(self, env, title = 'AIMA GUI', cellwidth=50, n=10):
# Initialize window
super(EnvGUI, self).__init__()
self.title(title)
# Create components
canvas = EnvCanvas(self, env, cellwidth, n)
toolbar = EnvToolbar(self, env, canvas)
for w in [canvas, toolbar]:
w.pack(side="bottom", fill="x", padx="3", pady="3")
class EnvToolbar(tk.Frame, object):
def __init__(self, parent, env, canvas):
super(EnvToolbar, self).__init__(parent, relief='raised', bd=2)
# Initialize instance variables
self.env = env
self.canvas = canvas
self.running = False
self.speed = 1.0
# Create buttons and other controls
for txt, cmd in [('Step >', self.env.step),
('Run >>', self.run),
('Stop [ ]', self.stop),
('List things', self.list_things),
('List agents', self.list_agents)]:
tk.Button(self, text=txt, command=cmd).pack(side='left')
tk.Label(self, text='Speed').pack(side='left')
scale = tk.Scale(self, orient='h',
from_=(1.0), to=10.0, resolution=1.0,
command=self.set_speed)
scale.set(self.speed)
scale.pack(side='left')
def run(self):
print 'run'
self.running = True
self.background_run()
def stop(self):
print 'stop'
self.running = False
def background_run(self):
if self.running:
self.env.step()
# ms = int(1000 * max(float(self.speed), 0.5))
#ms = max(int(1000 * float(self.delay)), 1)
delay_sec = 1.0 / max(self.speed, 1.0) # avoid division by zero
ms = int(1000.0 * delay_sec) # seconds to milliseconds
self.after(ms, self.background_run)
def list_things(self):
print "Things in the environment:"
for thing in self.env.things:
print "%s at %s" % (thing, thing.location)
def list_agents(self):
print "Agents in the environment:"
for agt in self.env.agents:
print "%s at %s" % (agt, agt.location)
def set_speed(self, speed):
self.speed = float(speed)